tf.train.batch(
tensors,
batch_size,
num_threads=1,
capacity=32,
enqueue_many=False,
shapes=None,
dynamic_pad=False,
allow_smaller_final_batch=False,
shared_name=None,
name=None
)
tf.train.slice_input_producer(
tensor_list,
num_epochs=None,
shuffle=True,
seed=None,
capacity=32,
shared_name=None,
name=None
)
核心步骤:
- 调用 tf.train.slice_input_producer,从 本地文件里抽取tensor,准备放入Filename Queue(文件名队列)中;
- 调用 tf.train.batch,从文件名队列中提取tensor,使用单个或多个线程,准备放入文件队列;
- 调用 tf.train.Coordinator() 来创建一个线程协调器,用来管理之后在Session中启动的所有线程;
- 调用tf.train.start_queue_runners, 启动入队线程,由多个或单个线程,按照设定规则,把文件读入Filename Queue中。函数返回线程ID的列表,一般情况下,系统有多少个核,就会启动多少个入队线程(入队具体使用多少个线程在tf.train.batch中定义);
- 文件从 Filename Queue中读入内存队列的操作不用手动执行,由tf自动完成;
- 调用sess.run 来启动数据出列和执行计算;
- 使用 coord.should_stop()来查询是否应该终止所有线程,当文件队列(queue)中的所有文件都已经读取出列的时候,会抛出一个 OutofRangeError 的异常,这时候就应该停止Sesson中的所有线程了;
- 使用coord.request_stop()来发出终止所有线程的命令,使用coord.join(threads)把线程加入主线程,等待threads结束。
Queue和Coordinator操作事例:
import tensorflow as tf
import numpy as np # 样本个数
sample_num=5
# 设置迭代次数
epoch_num = 2
# 设置一个批次中包含样本个数
batch_size = 3
# 计算每一轮epoch中含有的batch个数
batch_total = int(sample_num/batch_size)+1 # 生成4个数据和标签
def generate_data(sample_num=sample_num):
labels = np.asarray(range(0, sample_num))
images = np.random.random([sample_num, 224, 224, 3])
print('image size {},label size :{}'.format(images.shape, labels.shape))
return images,labels def get_batch_data(batch_size=batch_size):
images, label = generate_data()
# 数据类型转换为tf.float32
images = tf.cast(images, tf.float32)
label = tf.cast(label, tf.int32) #从tensor列表中按顺序或随机抽取一个tensor准备放入文件名称队列
input_queue = tf.train.slice_input_producer([images, label], num_epochs=epoch_num, shuffle=False) #从文件名称队列中读取文件准备放入文件队列
image_batch, label_batch = tf.train.batch(input_queue, batch_size=batch_size, num_threads=2, capacity=64, allow_smaller_final_batch=False)
return image_batch, label_batch image_batch, label_batch = get_batch_data(batch_size=batch_size) with tf.Session() as sess: # 先执行初始化工作
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer()) # 开启一个协调器
coord = tf.train.Coordinator()
# 使用start_queue_runners 启动队列填充
threads = tf.train.start_queue_runners(sess, coord) try:
while not coord.should_stop():
print ('************')
# 获取每一个batch中batch_size个样本和标签
image_batch_v, label_batch_v = sess.run([image_batch, label_batch])
print(image_batch_v.shape, label_batch_v)
except tf.errors.OutOfRangeError: #如果读取到文件队列末尾会抛出此异常
print("done! now lets kill all the threads……")
finally:
# 协调器coord发出所有线程终止信号
coord.request_stop()
print('all threads are asked to stop!')
coord.join(threads) #把开启的线程加入主线程,等待threads结束
print('all threads are stopped!')
输出:
************
((3, 224, 224, 3), array([0, 1, 2], dtype=int32))
************
((3, 224, 224, 3), array([3, 4, 0], dtype=int32))
************
((3, 224, 224, 3), array([1, 2, 3], dtype=int32))
************
done! now lets kill all the threads……
all threads are asked to stop!
all threads are stopped!
以上程序在 tf.train.slice_input_producer 函数中设置了 num_epochs 的数量, 所以在文件队列末尾有结束标志,读到这个结束标志的时候抛出 OutofRangeError 异常,就可以结束各个线程了。
如果不设置 num_epochs 的数量,则文件队列是无限循环的,没有结束标志,程序会一直执行下去。