# Program: Bubble sort
# Language: MIPS Assembly (32-bit)
# Arguments: 5 unordered numbers stored in $2 ~ $6 reg
# Author: brant-ruan
# Date: 2016-03-10
# IDE: MARS 4.5
# P.S.
# This program is one of my homework and the number of assembly instructions allowed is just 31.
# If I can use all the instructions of MIPS, optimizations will be considered.
# (E.g. The index() function should have been not necessary)
# Minds:
# It is not a good idea to store numbers from reg to mem. However, if using reg to sort directly,
# the program will be ridiculous for the regs can't be indexed as an array(Can they ?).
# My friend told me another brilliant idea that there's no need to swap $2 and $3, you can just store them to mem in the right order!!! Thanks!
######################################################################################################
.data
.word
array: 0, 0, 0, 0, 0
.text
# initialize $2 ~ $6
xor $2, $2, $2
xor $3, $3, $3
xor $4, $4, $4
xor $5, $5, $5
xor $6, $6, $6
add $2, $2, 7
add $3, $3, 4
add $4, $4, 8
add $5, $5, 13
add $6, $6, 2
# store values to be sorted into mem
sw $2, array+0
sw $3, array+4
sw $4, array+8
sw $5, array+12
sw $6, array+16
xor $5, $5, $5 # i
xor $6, $6, $6 # j
xor $7, $7, $7 # max_num
add $7, $7, 4 # max_num = 5 - 1 (the number of elements minus 1)
j begin
###############################################################################
# Sort procedure
sort:
# prototype: sort($2, $3)
# if $2 > $3 then swap($2, $3) else return
slt $4, $3, $2 # $4 is flag
beq $4, 0, sort_ret_src
xor $2, $2, $3
xor $3, $2, $3
xor $2, $2, $3
sort_ret_src:
j sort_ret_dst
###############################################################################
# Generate index procedure
index:
# For the data-type is word, we should generate 4*j as index
# prototype: index($12)
# if $30 is 0, store valid index in $9 and return to load_0, else store in $11 and return to load_1
xor $31, $31, $31 # count
xor $29, $29, $29 # valid index which will be returned
multiply:
beq $12, $31, ret # if count == $12, return
add $29, $29, 4 # $29 += 4
add $31, $31, 1 # count++
j multiply
ret:
beq $30, 1, ret_1 # judge return where
ret_0:
xor $9, $9, $9
add $9, $9, $29
j load_0
ret_1:
xor $11, $11, $11
add $11, $11, $29
j load_1
###############################################################################
begin:
beq $5, $7, end # if i == max_num, go to end
xor $10, $10, $10
add $10, $6, 1 # $10 is j+1
xor $12, $12, $12 # $12 is parameter of 'index' function
add $12, $12, $6 # deliver $6 (j) to $12
xor $30, $30, $30 # tell index() to return to load_0
j index
load_0:
lw $2, array($9) # load array[j] to $2 ($9 is index of j)
xor $12, $12, $12
add $12, $12, $10 # deliver $10 (j+1) to $12
xor $30, $30, $30
add $30, $30, 1 # tell index() to return to load_1
j index
load_1:
lw $3, array($11) # load array[j+1] to $3 ($11 is index of j+1)
j sort
sort_ret_dst:
sw $2, array($9) # store $2 into array[j]
sw $3, array($11) # store $3 into array[j+1]
add $6, $6, 1 # j++
sub $8, $7, $5 # $8 is (max_num - i)
bne $6, $8, next # if j < max_num-i, go to next
add $5, $5, 1 # i++
xor $6, $6, $6 # j = 0
next:
j begin
end:
# reload sorted array to $2 ~ $6
lw $2, array+0
lw $3, array+4
lw $4, array+8
lw $5, array+12
lw $6, array+16