#include "000库函数.h" //使用回溯法来计算
//经典解法为回溯递归,一层一层的向下扫描,需要用到一个pos数组,
//其中pos[i]表示第i行皇后的位置,初始化为 - 1,然后从第0开始递归,
//每一行都一次遍历各列,判断如果在该位置放置皇后会不会有冲突,以此类推,
//当到最后一行的皇后放好后,一种解法就生成了,将其存入结果res中,
//然后再还会继续完成搜索所有的情况,代码如下:17ms
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>>res;
vector<int>pos(n, -);
NQueue(res, pos, );
return res;
} void NQueue(vector<vector<string>>&res, vector<int>&pos, int t) {
int n = pos.size();
if (t == n) {//组合成功
vector<string>v(n, string(n, '.'));//这初始化绝逼了
for (int i = ; i < n; ++i)
v[i][pos[i]] = 'Q';
res.push_back(v);
}
else
for (int k = ; k < n; ++k)
if (Danger(pos, t, k)) {
pos[t] = k;
NQueue(res, pos, t + );
pos[t] = -;//切记,关键点,回溯
}
} bool Danger(vector<int>pos, int t, int k) {
for (int i = ; i < t; ++i)
if (pos[i] == k || abs(t - i) == abs(pos[i] - k))
return false;
return true;
} }; //通过使用排列进行判断是否可行进行求解
//但是太耗时了,还是用回溯法吧
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>>res;
vector<int>nums;
for (int i = ; i < n; ++i)
nums.push_back(i); if (Danger(nums)) {
vector<string>v;
for (int i = ; i < n; ++i) {
string s = "";
for (int k = ; k < nums[i]; ++k)
s += '.';
s += 'Q';
for (int k = nums[i] + ; k < n; ++k)
s += '.';
v.push_back(s);
}
res.push_back(v);
}
while (next_permutation(nums.begin(), nums.end())) {
if (Danger(nums)) {
vector<string>v;
for (int i = ; i < n; ++i) {
string s = "";
for (int k = ; k < nums[i]; ++k)
s += '.';
s += 'Q';
for (int k = nums[i] + ; k < n; ++k)
s += '.';
v.push_back(s);
}
res.push_back(v);
}
}
return res;
} bool Danger(vector<int>nums) {//用来判断是否可行
for (int i = ; i < nums.size(); ++i) {
for (int j = ; j < nums.size(); ++j) {
if (j == i)continue;
if ((j + nums[j]) == (i + nums[i]) || (i - nums[i]) == (j - nums[j]))
return false;
}
}
return true;
} }; void T051() {
Solution s;
vector<vector<string>>v;
int n;
n = ;
v = s.solveNQueens(n);
for (auto &a : v) {
for (auto b : a)
cout << b << endl;
cout << "//////////////////////////" << endl;
} }