P1465 序言页码 Preface Numbering
- 74通过
- 111提交
- 题目提供者该用户不存在
- 标签USACO
- 难度普及/提高-
提交 讨论 题解
最新讨论
- 暂时没有讨论
题目描述
一类书的序言是以罗马数字标页码的。传统罗马数字用单个字母表示特定的数值,以下是标准数字表:
I 1 V 5 X 10 L 50 C 100 D 500 M 1000
最多3个同样的可以表示为10n的数字(I,X,C,M)可以连续放在一起,表示它们的和:
III=3 CCC=300
可表示为5x10n的字符(V,L,D)从不连续出现。
除了下一个规则,一般来说,字符以递减的顺序接连出现:
CCLXVIII = 100+100+50+10+5+1+1+1 = 268
有时,一个可表示为10n的数出现在一个比它大1级或2级的数前(I在V或X前面,X在L或C前面,等等)。在这种情况下,数值等于后面的那个数减去前面的那个数:
IV = 4 IX = 9 XL = 40
一个数 用罗马数字来表示 有且仅有一种 而且不能复合嵌套使用(比如I是1 X是10 有人可能要说 IXL就能表示50-10-1 但是IXL绝对不能用来表达39 ) (那么39用什么来表示呢 XXXIX是唯一 而且正确的选择- -)
像XD, IC, 和XM这样的表达是非法的,因为前面的数比后面的数小太多。对于XD(490的错误表达),可以写成 CDXC; 对于IC(99的错误表达),可以写成XCIX; 对于XM(990的错误表达),可以写成CMXC。 90 写成 XC 而不是 LXL, 因为 L 后面的 X 意味着后继标记是 X 或者更小 (不管怎样,可能吧)(等同于阿拉伯数字 每位 数字分别表示)。
给定N(1 <= N < 3,500), 序言的页码数,请统计在第1页到第N页中,有几个I出现,几个V出现,等等 (从小到大的顺序)。不要输出没有出现过的字符。
比如N = 5, 那么页码数为: I, II, III, IV, V. 总共有7个I出现,2个V出现。
输入输出格式
输入格式:
一个整数N。
输出格式:
每行一个字符和一个数字k,表示这个字符出现了k次。字符必须按数字表中的递增顺序输出。
输入输出样例
5
I 7
V 2
说明
翻译来自NOCOW
USACO 2.2
分析:可以发现,给的罗马数字都是成倍成倍增长的,也就是如果我们把1-10的情况枚举完了那么1-100的情况也能很快枚举出来,找规律,发现1-3可以用I表示出来,4就只能用IV表示,5-8都可以用V加上I来表示,9只能用IX来表示,那么发现将这些操作扩展到100、1000就能够用1-10的规律来枚举这些数,因为罗马字符都是成倍增长的,但是似乎并不好直接做,观察发现数据较小,那么直接枚举即可.
#include<cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int i, v, x, l, c, d, m, n, k, rp; int main()
{
i = ;v = ;x = ;c = ;d = ;
scanf("%d", &n);
for (rp = ;rp <= n;rp++)
{
k = rp;
while (k>)
{
if (k >= )
{
k = k - ;
m = m + ;
}
else if (k< && k >= )
{
k = k - ;
m = m + ;
c = c + ;
}
else if (k< && k >= )
{
k = k - ;
d = d + ;
}
else if (k< && k >= )
{
k = k - ;
d = d + ;
c = c + ;
}
else if (k< && k >= )
{
k = k - ;
c = c + ;
}
else if (k< && k >= )
{
k = k - ;
x = x + ;
c = c + ;
}
else if (k< && k >= )
{
k = k - ;
l = l + ;
}
else if (k< && k >= )
{
k = k - ;
l = l + ;
x = x + ;
}
else if (k< && k >= )
{
k = k - ;
x = x + ;
}
else if (k< && k >= )
{
k = k - ;
i = i + ;
x = x + ;
}
else if (k< && k >= )
{
k = k - ;
v = v + ;
}
else if (k< && k >= )
{
k = k - ;
i = i + ;
v = v + ;
}
else if (k< && k >= )
{
i = i + ;
k = k - ;
}
}
}
if (i>)printf("I %d\n", i);
if (v>)printf("V %d\n", v);
if (x>)printf("X %d\n", x);
if (l>)printf("L %d\n", l);
if (c>)printf("C %d\n", c);
if (d>)printf("D %d\n", d);
if (m>)printf("M %d\n", m); return ;
}