Pytorch在各个领域应用的github仓库合集

这份合集列表中包含了与pytorch有关的各种教程,项目,库,视频,文章,书籍等等,可谓是及其丰富了。

目录

  1. 表单数据
  2. 教程
  3. 可视化
  4. 可解释性
  5. 物体检测
  6. 长拖尾 / Out-of-Distribution Recognition
  7. 基于能量的学习
  8. 缺失数据
  9. 架构搜索
  10. 优化
  11. 量化
  12. 量子机器学习
  13. 神经网络压缩
  14. 面部,行为和姿势识别
  15. 超分辨率
  16. Synthetesizing Views
  17. 声音
  18. 医疗
  19. 3D 分割,分类和回归
  20. 视频识别
  21. 循环神经网络 (RNNs)
  22. 卷积神经网络 (CNNs)
  23. 分割
  24. 几何深度学习: Graph & Irregular Structures
  25. 排序
  26. Ordinary Differential Equations Networks
  27. 多任务学习
  28. GANs, VAEs和 AEs
  29. 非监督式学习
  30. 对抗攻击
  31. 风格迁移
  32. 图片标注
  33. Transformers
  34. Similarity Networks and Functions
  35. 推理
  36. 通用NLP
  37. 问与答
  38. 语音生成与识别
  39. 文档和文本分类
  40. 文本生成
  41. 翻译
  42. 语义分析
  43. 深度强化学习
  44. 深度贝叶斯学习和概率编程
  45. Spiking Neural Networks
  46. 异常检测
  47. 回归类别
  48. 时间序列
  49. 合成数据集
  50. 神经网络的一般改进
  51. 深度学习在化学和物理中的应用
  52. 对神经网络架构的新思想
  53. 线性代数
  54. API抽象化
  55. 底层好物
  56. PyTorch好物
  57. PyTorch 视频教程
  58. 数据集
  59. 社区

1. Tabular Data

2. Tutorials

3. Visualization

4. Explainability

5. Object Detection

6. Long-Tailed / Out-of-Distribution Recognition

7. Energy-Based Learning

8. Missing Data

10. Optimization

11. Quantization

12. Quantum Machine Learning

13. Neural Network Compression

14. Facial, Action and Pose Recognition

15. Super resolution

16. Synthetesizing Views

17. Voice

18. Medical

19. 3D Segmentation, Classification and Regression

20. Video Recognition

21. Recurrent Neural Networks (RNNs)

22. Convolutional Neural Networks (CNNs)

23. Segmentation

24. Geometric Deep Learning: Graph & Irregular Structures

25. Sorting

26. Ordinary Differential Equations Networks

27. Multi-task Learning

28. GANs, VAEs, and AEs

29. Unsupervised Learning

30. Adversarial Attacks

31. Style Transfer

32. Image Captioning

33. Transformers

34. Similarity Networks and Functions

35. Reasoning

36. General NLP

37. Question and Answering

38. Speech Generation and Recognition

39. Document and Text Classification

40. Text Generation

41. Translation

42. Sentiment Analysis

43. Deep Reinforcement Learning

44. Deep Bayesian Learning and Probabilistic Programmming

45. Spiking Neural Networks

46. Anomaly Detection

47. Regression Types

48. Time Series

49. Synthetic Datasets

50. Neural Network General Improvements

51. DNN Applications in Chemistry and Physics

52. New Thinking on General Neural Network Architecture

53. Linear Algebra

54. API Abstraction

55. Low Level Utilities

56. PyTorch Utilities

57. PyTorch Video Tutorials

58. Datasets

59. Community

61. To be Classified

https://github.com/ritchieng/the-incredible-pytorch

上一篇:Android APK反编译技巧全讲解


下一篇:Java Android(安卓)APK中Java代码查看方法(Apktool,dex2jar,jd-gui)