8、神经网络:表述(Neural Networks: Representation)

8.1 非线性假设

我们之前学的,无论是线性回归还是逻辑回归都有这样一个缺点,即:当特征太多时,计算的负荷会非常大。

下面是一个例子:

8、神经网络:表述(Neural Networks: Representation)

  当我们使用x1, x2 的多次项式进行预测时,我们可以应用的很好。 之前我们已经看到过,使用非线性的多项式项,能够帮助我们建立更好的分类模型。假设我们有非常多的特征,例如大于100个变量,我们希望用这100个特征来构建一个非线性的多项式模型,结果将是数量非常惊人的特征组合,即便我们只采用两两特征的组合(

上一篇:Docker单机利器之docker-compose


下一篇:兼容认证 | BoCloud博云与F5携手加速容器云生产落地