去除null、NaN
去除 dataframe
中的 null
、 NaN
有方法 drop
,用 dataframe.na
找出带有 null
、 NaN
的行,用 drop
删除行:
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.{DataFrame, SQLContext, SparkSession}
/**
* Created by TTyb on 2017/10/12.
*/
object test3 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("TTyb").setMaster("local")
val sc = new SparkContext(conf)
val spark=new SQLContext(sc)
val sentenceDataFrame = spark.createDataFrame(Seq(
(1, "asf"),
(2, "2143"),
(3, "rfds"),
(4, null),
(5, "")
)).toDF("label", "sentence")
sentenceDataFrame.show()
sentenceDataFrame.na.drop().show()
}
}
去除空字符串
去除空字符串用 dataframe.where
:
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.{DataFrame, SQLContext, SparkSession}
/**
* Created by TTyb on 2017/10/12.
*/
object test3 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("TTyb").setMaster("local")
val sc = new SparkContext(conf)
val spark=new SQLContext(sc)
val sentenceDataFrame = spark.createDataFrame(Seq(
(1, "asf"),
(2, "2143"),
(3, "rfds"),
(4, null),
(5, "")
)).toDF("label", "sentence")
sentenceDataFrame.show()
// sentenceDataFrame.na.drop().show()
sentenceDataFrame.where("sentence <> ''").show()
}
}