Luogu P1522 牛的旅行 Cow Tours

题目描述

农民 John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通。这样,Farmer John就有多个牧场了。

John想在牧场里添加一条路径(注意,恰好一条)。对这条路径有以下限制:

一个牧场的直径就是牧场中最远的两个牧区的距离(本题中所提到的所有距离指的都是最短的距离)。考虑如下的有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:

                (15,15) (20,15)
D E
*-------*
| _/|
| _/ |
| _/ |
|/ |
*--------*-------*
A B C
(10,10) (15,10) (20,10)

【请将以上图符复制到记事本中以求更好的观看效果,下同】

这个牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。

这里是另一个牧场:

                         *F(30,15)
/
_/
_/
/
*------*
G H
(25,10) (30,10)

在目前的情景中,他刚好有两个牧场。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。

注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。

输入文件包括牧区、它们各自的坐标,还有一个如下的对称邻接矩阵


  A B C D E F G H
A 0 1 0 0 0 0 0 0
B 1 0 1 1 1 0 0 0
C 0 1 0 0 1 0 0 0
D 0 1 0 0 1 0 0 0
E 0 1 1 1 0 0 0 0
F 0 0 0 0 0 0 1 0
G 0 0 0 0 0 1 0 1
H 0 0 0 0 0 0 1 0

其他邻接表中可能直接使用行列而不使用字母来表示每一个牧区。输入数据中不包括牧区的名字。

输入文件至少包括两个不连通的牧区。

请编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。输出在所有牧场中最小的可能的直径。

输入输出格式

输入格式:

第1行: 一个整数N (1 <= N <= 150), 表示牧区数

第2到N+1行: 每行两个整数X,Y (0 <= X ,Y<= 100000), 表示N个牧区的坐标。注意每个 牧区的坐标都是不一样的。

第N+2行到第2*N+1行: 每行包括N个数字(0或1) 表示如上文描述的对称邻接矩阵。

输出格式:

只有一行,包括一个实数,表示所求直径。数字保留六位小数。

只需要打到小数点后六位即可,不要做任何特别的四舍五入处理。

输入输出样例

输入样例#1:
8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010
输出样例#1:
22.071068

说明

翻译来自NOCOW

USACO 2.4

 #include<bits/stdc++.h>
using namespace std;
int n;
int x[],y[];
char a;
double m[][],d[];
double ans1,ans2,ans,t;
int maxx=1e12;
inline double jl(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
int main()
{
cin>>n;
for(int i=;i<=n;i++)
{
cin>>x[i]>>y[i];
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
cin>>a;
if(a=='')
m[i][j]=jl(i,j);
else
m[i][j]=maxx;
}
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if((i!=j)&&(j!=k)&&(i!=k)&&m[k][j]!=maxx&&m[i][k]!=maxx&&m[i][j]>m[i][k]+m[k][j])
m[i][j]=m[i][k]+m[k][j];
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(d[i]<m[i][j]&&m[i][j]!=maxx)
d[i]=m[i][j];
if(d[i]>ans1)
ans1=d[i];
}
ans2=maxx;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(m[i][j]==maxx&&i!=j)
{
t=jl(i,j);
if(d[i]+d[j]+t<ans2)
ans2=d[i]+d[j]+t;
}
}
ans=max(ans1,ans2);
printf("%.6lf",ans);
return ;
}
上一篇:hdu 5876 (补图BFS) Sparse Graph


下一篇:基于css3的轮播效果