解题思路:
直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题。
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <cstdio>
#include <stdlib.h>
#include <time.h>
#include <assert.h>
#define LL long long
#define FOR(i, x, y) for(int i=x;i<=y;i++)
using namespace std;
const int maxn = 100000 + 10;
LL Pow_mod(LL a, LL b, LL mod)
{
LL ret = 1;
while(b)
{
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
LL fac[maxn];
void init(LL p)
{
fac[0] = 1;
FOR(i, 1, p) fac[i] = (fac[i-1] * i) % p;
}
LL Lucas(LL n, LL m, LL p)
{
LL ret = 1;
while(n && m)
{
LL a = n % p, b = m % p;
if(a < b) return 0;
ret = (ret * fac[a] * Pow_mod(fac[b] * fac[a-b] % p , p - 2 , p)) % p;
n /= p, m /= p;
}
return ret;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n, m, p;
scanf("%d%d%d", &n, &m, &p);
init(p);
printf("%d\n", (int)Lucas(n + m, m, p));
}
return 0;
}