需求:
- 导入文件,查看原始数据
- 将人口数据和各州简称数据进行合并
- 将合并的数据中重复的abbreviation列进行删除
- 查看存在缺失数据的列
- 找到有哪些state/region使得state的值为NaN,进行去重操作
- 为找到的这些state/region的state项补上正确的值,从而去除掉state这一列的所有NaN
- 合并各州面积数据areas
- 我们会发现area(sq.mi)这一列有缺失数据,找出是哪些行
- 去除含有缺失数据的行
- 找出2010年的全民人口数据
- 计算各州的人口密度
- 排序,并找出人口密度最高的五个州 df.sort_values()
import numpy as np
from pandas import DataFrame,Series
import pandas as pd
abb = pd.read_csv('./data/state-abbrevs.csv')
pop = pd.read_csv('./data/state-population.csv')
area = pd.read_csv('./data/state-areas.csv')
abb.head(2)
pop.head(2)
0 |
AL |
under18 |
2012 |
1117489.0 |
1 |
AL |
total |
2012 |
4817528.0 |
area.head(2)
0 |
Alabama |
52423 |
1 |
Alaska |
656425 |
1. 将人口数据和各州简称数据进行合并
# 将人口数据和各州简称数据进行合并
abb_pop = pd.merge(abb,pop,how='outer',left_on='abbreviation',right_on='state/region')
abb_pop.head(4)
0 |
Alabama |
AL |
AL |
under18 |
2012 |
1117489.0 |
1 |
Alabama |
AL |
AL |
total |
2012 |
4817528.0 |
2 |
Alabama |
AL |
AL |
under18 |
2010 |
1130966.0 |
3 |
Alabama |
AL |
AL |
total |
2010 |
4785570.0 |
2.将合并的数据中重复的abbreviation列进行删除
abb_pop.drop(labels='abbreviation',axis=1,inplace=True)
abb_pop.head(4)
0 |
Alabama |
AL |
under18 |
2012 |
1117489.0 |
1 |
Alabama |
AL |
total |
2012 |
4817528.0 |
2 |
Alabama |
AL |
under18 |
2010 |
1130966.0 |
3 |
Alabama |
AL |
total |
2010 |
4785570.0 |
3.查看存在缺失数据的列
#查看存在缺失数据的列
# abb_pop.loc[]
abb_pop.isnull().any(axis=0)
state True
state/region False
ages False
year False
population True
dtype: bool
4.找到有哪些state/region使得state的值为NaN,进行去重操作
#找到有哪些state/region使得state的值为NaN,进行去重操作
# 判断是否为空
abb_pop['state'].isnull()
# 定位到 state 为空的数据
abb_pop.loc[abb_pop['state'].isnull()]
#将结果中的state/region列取出,返回的是一个Series
abb_pop.loc[abb_pop['state'].isnull()]['state/region']
#对Series进行去重
abb_pop.loc[abb_pop['state'].isnull()]['state/region'].unique()
- array(['USA'], dtype=object)
#为找到的这些state/region的state项补上正确的值,从而去除掉state这一列的所有NaN
abb_pop.loc[abb_pop['state/region'] == 'PR']
PR_indexs = abb_pop.loc[abb_pop['state/region'] == 'PR'].index
PR_indexs
Int64Index([2448, 2449, 2450, 2451, 2452, 2453, 2454, 2455, 2456, 2457, 2458,
2459, 2460, 2461, 2462, 2463, 2464, 2465, 2466, 2467, 2468, 2469,
2470, 2471, 2472, 2473, 2474, 2475, 2476, 2477, 2478, 2479, 2480,
2481, 2482, 2483, 2484, 2485, 2486, 2487, 2488, 2489, 2490, 2491,
2492, 2493, 2494, 2495],
dtype='int64')
5.给对应的 空值赋值
abb_pop.loc[PR_indexs,'state'] = 'ppprrr'
usa_index = abb_pop.loc[abb_pop['state/region'] == 'USA'].index
# abb_pop.loc[usa_index,'state'] = 'Alabama'
abb_pop.loc[usa_index,'state']
6.合并各州面积数据areas
area.head()
abb_pop_area = pd.merge(abb_pop,area,how='outer')
abb_pop_area.head()
0 |
Alabama |
AL |
under18 |
2012.0 |
1117489.0 |
52423.0 |
1 |
Alabama |
AL |
total |
2012.0 |
4817528.0 |
52423.0 |
2 |
Alabama |
AL |
under18 |
2010.0 |
1130966.0 |
52423.0 |
3 |
Alabama |
AL |
total |
2010.0 |
4785570.0 |
52423.0 |
4 |
Alabama |
AL |
under18 |
2011.0 |
1125763.0 |
52423.0 |
7.我们会发现area(sq.mi)这一列有缺失数据,找出是哪些行
#我们会发现area(sq.mi)这一列有缺失数据,找出是哪些行
abb_pop_area['area (sq. mi)'].isnull()
indexs = abb_pop_area.loc[abb_pop_area['area (sq. mi)'].isnull()].index
8.去除含有缺失数据的行
#去除含有缺失数据的行
abb_pop_area.drop(labels=indexs,axis=0,inplace=True)
9.找出2010年的全民人口数据
#找出2010年的全民人口数据
abb_pop_area.query('year == 2010 & ages == "total"')
10.计算各州的人口密度
#计算各州的人口密度
abb_pop_area['population']/abb_pop_area['area (sq. mi)']
# 将数据添加到 总数据中
abb_pop_area['midu'] = abb_pop_area['population']/abb_pop_area['area (sq. mi)']
abb_pop_area.head()
0 |
Alabama |
AL |
under18 |
2012.0 |
1117489.0 |
52423.0 |
21.316769 |
1 |
Alabama |
AL |
total |
2012.0 |
4817528.0 |
52423.0 |
91.897221 |
2 |
Alabama |
AL |
under18 |
2010.0 |
1130966.0 |
52423.0 |
21.573851 |
3 |
Alabama |
AL |
total |
2010.0 |
4785570.0 |
52423.0 |
91.287603 |
4 |
Alabama |
AL |
under18 |
2011.0 |
1125763.0 |
52423.0 |
21.474601 |
11.排序,并找出人口密度最高的五个州 df.sort_values()
##排序,并找出人口密度最高的五个州 df.sort_values()
# ascending=False 倒叙
abb_pop_area.sort_values('midu',axis=0,ascending=False).head(5)
439 |
District of Columbia |
DC |
total |
2013.0 |
646449.0 |
68.0 |
9506.602941 |
433 |
District of Columbia |
DC |
total |
2012.0 |
633427.0 |
68.0 |
9315.102941 |
435 |
District of Columbia |
DC |
total |
2011.0 |
619624.0 |
68.0 |
9112.117647 |
479 |
District of Columbia |
DC |
total |
1990.0 |
605321.0 |
68.0 |
8901.779412 |
437 |
District of Columbia |
DC |
total |
2010.0 |
605125.0 |
68.0 |
8898.897059 |