1.梯度下降优化器
tf.compat.v1.train.GradientDescentOptimizer(learning_rate=0.2)
learning_rate 介于0到1之间
2.增加了动量项
tf.compat.v1.train.MomentumOptimizer(learning_rate=,momentum=,).minimize(loss)
momentum是增加的动量项
3.自适应的、单调递减的学习率
tf.compat.v1.train.AdadeltaOptimizer(learning_rate=,rho=,).minimize(loss)
rho代表了该算法的衰减因子
4.实现指数衰减的学习率
#实现指数衰减
global_step=tf.Variable(0,trainable=False)
initial_learning_rate=0.2
learning_rate=tf.compat.v1.train.exponential_decay(initial_learning_rate,global_step,decay_steps=10000,
decay_rate=0.5,staircase=True)