学习向量量化法(Learning vector quantization)

学习向量量化法(Learning vector quantization)
一般针对二分类,多分类问题

在codebook vector里面找数据,通过欧几里得距离公式判断距离,寻找最好的数学单元(Best - Matching- Unit)

训练过程:
选择部分codebook vector数据记为A
⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇
开始竞争(codebook vector中选出的A与训练实例一致的情况下,A靠近实例,反之则远离)
⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇
通过学习率(learning-rate)控制远离的程度
B = B + learing-rate*(K-B)
K是训练数据,B输入变量
⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇
对每个实例进行上述的单独学习
learning-rate也会有alpha(α,这里指最初定义的学习率)进行变化
学习率更新公式:
learing-rate = α * (1-epoch/max_epoch)

上一篇:nginx安全:用limit_req_zone/limit_req限制连接速率(流量控制/限流)


下一篇:TensorFlow:好用的时间序列训练测试集生成器(Python)