levelDB跳表实现

跳表的原理就是利用随机性建立索引,加速搜索,并且简化代码实现难度。具体的跳表原理不再赘述,主要是看了levelDB有一些实现细节的东西,凸显自己写的实现不足之处。

  • 去除冗余的key

      template<typename Key, class Comparator>
    struct SkipList<Key,Comparator>::Node {
    explicit Node(const Key& k) : key(k) { } Key const key; // Accessors/mutators for links. Wrapped in methods so we can
    // add the appropriate barriers as necessary.
    Node* Next(int n) {
    assert(n >= 0);
    // Use an 'acquire load' so that we observe a fully initialized
    // version of the returned Node.
    return reinterpret_cast<Node*>(next_[n].Acquire_Load());
    }
    void SetNext(int n, Node* x) {
    assert(n >= 0);
    // Use a 'release store' so that anybody who reads through this
    // pointer observes a fully initialized version of the inserted node.
    next_[n].Release_Store(x);
    } // No-barrier variants that can be safely used in a few locations.
    Node* NoBarrier_Next(int n) {
    assert(n >= 0);
    return reinterpret_cast<Node*>(next_[n].NoBarrier_Load());
    }
    void NoBarrier_SetNext(int n, Node* x) {
    assert(n >= 0);
    next_[n].NoBarrier_Store(x);
    } private:
    // Array of length equal to the node height. next_[0] is lowest level link.
    port::AtomicPointer next_[1];
    };

    这里使用一个Node节点表示所有相同key,不同高度的节点集合,仅保留了key和不同高度的向右指针,并且使用NewNode来动态分配随即高度的向右指针集合,而next_就指向这指针集合。这也是c/c++ tricky的地方。

      #include <stdio.h>
    struct Node {
    char str[1];
    };
    int main() {
    char* mem = new char[4];
    for (int i = 0; i < 4; i++) {
    mem[i] = i + '0';
    }
    Node* node = (Node*)mem;
    char* const pstr = node->str;
    for (int i = 0; i < 4; i++) {
    printf("%c", pstr[i]);
    }
    return 0;
    }

    就像上面这个简单的sample,成员str可以作为指针指向从数组下标0开始的元素,并且不受申明时的限制,不局限于大小1,索引至分配的最大的内存地址。

  • 简易随机数生成

      uint32_t Next() {
    static const uint32_t M = 2147483647L; // 2^31-1
    static const uint64_t A = 16807; // bits 14, 8, 7, 5, 2, 1, 0
    // We are computing
    // seed_ = (seed_ * A) % M, where M = 2^31-1
    //
    // seed_ must not be zero or M, or else all subsequent computed values
    // will be zero or M respectively. For all other values, seed_ will end
    // up cycling through every number in [1,M-1]
    uint64_t product = seed_ * A; // Compute (product % M) using the fact that ((x << 31) % M) == x.
    seed_ = static_cast<uint32_t>((product >> 31) + (product & M));
    // The first reduction may overflow by 1 bit, so we may need to
    // repeat. mod == M is not possible; using > allows the faster
    // sign-bit-based test.
    if (seed_ > M) {
    seed_ -= M;
    }
    return seed_;
    }

    可以看到,他使用A和M对种子进行运算,达到一定数据范围内不会重复的数集,而里面对于(product % M),使用(product >> 31) + (product & M)进行运算优化,考虑右移和与操作的代价远小于取余操作。

  • 简洁清晰的私有帮助方法,帮助寻找小于指定key的节点

      template<typename Key, class Comparator>
    typename SkipList<Key,Comparator>::Node*
    SkipList<Key,Comparator>::FindLessThan(const Key& key) const {
    Node* x = head_;
    int level = GetMaxHeight() - 1;
    while (true) {
    assert(x == head_ || compare_(x->key, key) < 0);
    Node* next = x->Next(level);
    if (next == NULL || compare_(next->key, key) >= 0) {
    if (level == 0) {
    return x;
    } else {
    // Switch to next list
    level--;
    }
    } else {
    x = next;
    }
    }
    }
上一篇:Python3 tkinter基础 Entry state 不可写 可以选 可复制的输入框


下一篇:《MySQL必知必会》官方提供的数据库和表