数据挖掘经典算法之KNN

KNN也称为k近邻算法,本质思想:物以类聚。

在分类或者预测中,待分类或预测的样本的类别和走势将直接参考与该样本最“近邻”的k个邻居。

在这种思路下,KNN注定会遇到3个问题:

(1): 谁是我的邻居:距离度量
(2): 参考多少个邻居作为参考:K值的选择,越多越好吗? 不一定。
(3): 有了k个最近邻居了,如何进行决策:分类决策规则
 
距离度量:闵可夫斯基 || 曼哈顿 || 欧式 || 切比雪夫,具体公式可参考wiki百科
另外:在多维数据中,不同的维度的值差异可能较大,为了平等处理每个特征,需要进行归一化。(每个维度的差值都除该维度最大最小值的差),也可根据情况,加权各个特征。
 
K值的选择:本人目前知识范围内,没有具体的方法来对k进行计算。 通过实验进行选取吧。K=1,2,3,4,8...
 
如何进行决策:在选出了K个邻居后,可以通过多数表决或者加权的方式,来获得最终的结果。
 
总结:
在该方法中,不会有提前从训练数据集中训练出的模型的,但是可以提前训练出K值 + 距离度量方法 + 决策方法。
缺点:在计算邻居时,算法时间复杂度较大,特别是当样本大时,从样本中找出k个与当前样本最近的节点时间复杂度为O(n2),为了解决时间效率为题,有2种解决思路:
  • 使用新的数据结构:KD树(程序员喜欢、适合大数据潮流)
  • 对数据进行清洗,去掉一些不必要的样本(大数据思想,好像不太喜欢这个方案)
 
对与KNN,先写到这。 关于KD树,可以参考一下链接:
 
 
 
 
 
上一篇:黑马基础阶段测试题:定义一个int类型的数组,数组中元素为{5,7,3,9,4}。求出数组中的最小值,并判断最小值是否为偶数,如果是偶数则输出“最小值为偶数”,如果不是偶数则输出“最小值为奇数”。打印如下:


下一篇:java利用Google Zxing实现 二维码生成与解析