Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
题意分析:
给定一个非负整数的list,每一个元素代表如图中柱状图的纵坐标。结合图中来看,黑色的是给定的list,让你求出这些黑色柱体围起来能够盛的水量是多少,也就是图中蓝色柱体的面积(每个柱体宽都是1)。
解答:
本题和11. Container With Most Water有些类似,那道题求的是两个坐标之间能够盛的最大水量,本题是所有坐标中能够盛下的水量。考虑到每个坐标宽度都是1,所以我们把问题简化为求每个坐标上面能够盛的水量。
那么单个坐标的水量怎么求呢?我们假设i为当前需要求的坐标,如果i左侧比i高且是最高的设为left_max,同时能够保证i右侧有比left_max高的坐标,那么i能够盛的水量就是left_max减去i。基于这样一种思路,我们依然可以用双指针的方式去解。
AC代码:
class Solution(object):
def trap(self, height):
ret_num = 0
left, right, left_max, right_max = 0, len(height) - 1, 0, 0
while left <= right:
if height[left] < height[right]:
if height[left] >= left_max:
left_max = height[left]
else:
ret_num += left_max - height[left]
left += 1
else:
if height[right] >= right_max:
right_max = height[right]
else:
ret_num += right_max - height[right]
right -= 1
return ret_num