我们到底能走多远系列(41)
扯淡:
这一年过的不匆忙,也颇多感受,成长的路上难免弯路,这个世界上没人关心你有没有变强,只有自己时刻提醒自己,不要忘记最初出发的原因。
其实这个世界上比我们聪明的人无数,很多人都比我们努力,当我门奇怪为什么他们可以如此轻松的时候,是不会问他们付出过什么。怨天尤人是无用的,使自己变好,哪怕是变好一点点,我觉得生活着就是有意义的。
未来,太远。唯有不停的积累,不要着急,抓得住的才能叫机会。
羊年,一定要不做被动的人。大家加油!
目录留白:
主题:
直接进ThreadPoolExecutor源码看一看:(版本是1.7.0)
首先,这个线程池的状态是怎么样的呢?
我们看下面的字段定义,ctl作为ThreadPoolExecutor的核心状态控制字段,包含来两个信息:
1,工作线程总数 workerCount
2,线程池状态 RUNNING SHUTDOWN STOP TIDYING TERMINATED
下面代码解释一下:
COUNT_BITS 是32减去3 就是29,下面的线程池状态就是-1 到 3 分别向左移动29位。
如此,int的右侧29位,代表着线程数量,总数可以达到2的29次,29位后的3位代表线程池的状态
这样,线程池增加一个线程,只需吧ctl加1即可,而我们也发现实际这个线程池的最高线程数量是2的29次减1。并不是先前我们现象的2的32次减1。这个作者在注释中也提到了,说如果后续需要增大这个值, 可以吧ctl定义成AtomicLong。
这个关键的控制字段的理解,对阅读源码很有帮助。
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;// 111 00000000000000000000000000000
private static final int SHUTDOWN = 0 << COUNT_BITS;// 000 00000000000000000000000000000
private static final int STOP = 1 << COUNT_BITS;// 001 00000000000000000000000000000
private static final int TIDYING = 2 << COUNT_BITS;// 010 00000000000000000000000000000
private static final int TERMINATED = 3 << COUNT_BITS;// 100 00000000000000000000000000000 // Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }//最高3位
private static int workerCountOf(int c) { return c & CAPACITY; }//后29位
private static int ctlOf(int rs, int wc) { return rs | wc; }
代码里我们可能会这样使用ThreadPoolExecutor的方法:
Future<?> future = this.threadPoolExecutor.submit(runnable);
那么就从submit方法入手,这个submit的代码在 AbstractExecutorService,因为 ThreadPoolExecutor继承了它。
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
把task包装成RunnableFuture,然后执行execute,下面是ThreadPoolExecutor的execute方法:
这个方法就是我们把任务提交给线程池去完成,至于线程池按照怎样的一个管理机制来完成这个task我们不关心,task关系的是run方法中的逻辑。
如此,对于开发来说是极其方便的,配置一个线程池,只需一句代码,然后专心完成task的逻辑。
那么,了解这个线程池的机制,我感觉只需要看下这个execute方法大概也明白了。特别是方法中的注释。
1,当一个task被安排进来的时候,再确定不是空值后,直接判断在池中已经有工作的线程是否小于corePoolSize,小于则增加一个线程来负责这个task。
2,如果池中已经工作的线程大于等于corePoolSize,就向队列里存task,而不是继续增加线程。
3,当workQueue.offer失败时,也就是说task不能再向队列里放的时候,而此时工作线程大于等于corePoolSize,那么新进的task,就要新开一个线程来接待了。
根据代码分析诸多判断和逻辑,而对于使用这个线程池的外部来说,机制是这样:
a、如果正在运行的线程数 < corePoolSize,那就马上创建线程并运行这个任务,而不会进行排队。
b、如果正在运行的线程数 >= corePoolSize,那就把这个任务放入队列。
c、如果队列满了,并且正在运行的线程数 < maximumPoolSize,那么还是要创建线程并运行这个任务。
d、如果队列满了,并且正在运行的线程数 >= maximumPoolSize,那么线程池就会调用handler里方法。(采用LinkedBlockingDeque就不会出现队列满情况)
/**
* Executes the given task sometime in the future. The task
* may execute in a new thread or in an existing pooled thread.
*
* If the task cannot be submitted for execution, either because this
* executor has been shutdown or because its capacity has been reached,
* the task is handled by the current {@code RejectedExecutionHandler}.
*
* @param command the task to execute
* @throws RejectedExecutionException at discretion of
* {@code RejectedExecutionHandler}, if the task
* cannot be accepted for execution
* @throws NullPointerException if {@code command} is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
单从execute方法,大概能了解整个线程池的工作机制。
那么,全局的观看以下,我们一定明白这个ThreadPoolExecutor维护着一个池:
/**
* Set containing all worker threads in pool. Accessed only when
* holding mainLock.
*/
private final HashSet<Worker> workers = new HashSet<Worker>();
猜测execute方法中的addWorker应该是向这个set中add一个worker,而这里面的worker里有一个线程,这个线程执行完成时,就会从这个set中remove掉。
看一下开进程开始工作的addWorker方法:
/*
* Methods for creating, running and cleaning up after workers
*/
/**
* Checks if a new worker can be added with respect to current
* pool state and the given bound (either core or maximum). If so,
* the worker count is adjusted accordingly, and, if possible, a
* new worker is created and started, running firstTask as its
* first task. This method returns false if the pool is stopped or
* eligible to shut down. It also returns false if the thread
* factory fails to create a thread when asked. If the thread
* creation fails, either due to the thread factory returning
* null, or due to an exception (typically OutOfMemoryError in
* Thread#start), we roll back cleanly.
*
* @param firstTask the task the new thread should run first (or
* null if none). Workers are created with an initial first task
* (in method execute()) to bypass queuing when there are fewer
* than corePoolSize threads (in which case we always start one),
* or when the queue is full (in which case we must bypass queue).
* Initially idle threads are usually created via
* prestartCoreThread or to replace other dying workers.
*
* @param core if true use corePoolSize as bound, else
* maximumPoolSize. (A boolean indicator is used here rather than a
* value to ensure reads of fresh values after checking other pool
* state).
* @return true if successful
*/
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c); // Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false; for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
} boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
final ReentrantLock mainLock = this.mainLock;
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int c = ctl.get();
int rs = runStateOf(c); if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
方法前面的retry循环,最终break的时候,执行compareAndIncrementWorkerCount(c),是的,最前面提到的ctl加1啦!这里利用CAS原则,可以参考先前的文章:摸我
/**
* Attempt to CAS-increment the workerCount field of ctl.
*/
private boolean compareAndIncrementWorkerCount(int expect) {
return ctl.compareAndSet(expect, expect + 1);
}
retry循环break之后,就是做核心的事,new一个worker出来然后add进set,然后启动worker里的thread。
我们注意到做把worker放入set这个操作前,先获取了锁,这个mainLock是类静态成员变量,是一个公用的可重入锁:
/**
* Lock held on access to workers set and related bookkeeping.
* While we could use a concurrent set of some sort, it turns out
* to be generally preferable to use a lock. Among the reasons is
* that this serializes interruptIdleWorkers, which avoids
* unnecessary interrupt storms, especially during shutdown.
* Otherwise exiting threads would concurrently interrupt those
* that have not yet interrupted. It also simplifies some of the
* associated statistics bookkeeping of largestPoolSize etc. We
* also hold mainLock on shutdown and shutdownNow, for the sake of
* ensuring workers set is stable while separately checking
* permission to interrupt and actually interrupting.
*/
private final ReentrantLock mainLock = new ReentrantLock();
其实调用这个 addWorker方法有4种传参的方式:
1, addWorker(command, true);
2, addWorker(command, false);
3, addWorker(null, false);
4, addWorker(null, true);
在execute方法中就使用了前3种,结合这个核心方法我们先进行一下分析。
第一个:线程数小于corePoolSize时,放一个需要处理的task进worker set。如果worker set长度超过corePoolSize,就返回false。
第二个:当队列被放满时,就尝试将这个新来的task直接放入worker set,而此时worker set 的长度限制是maximumPoolSize。如果线程池也满了的话就返回false。
第三个:放入一个空的task进set,比较的的长度限制是maximumPoolSize。这样一个task为空的worker在线程执行的时候会判断出后去任务队列里拿任务,这样就相当于世创建了一个新的线程,只是没有马上分配任务。
第四个:这个方法就是放一个null的task进set,而且是在小于corePoolSize时。实际使用中是在 prestartCoreThread() 方法。这个方法用来为线程池先启动一个worker等待在那边,如果此时set中的数量已经达到corePoolSize那就返回false,什么也不干。还有是 prestartAllCoreThreads() 方法,准备corePoolSize个worker:
/**
* Starts all core threads, causing them to idly wait for work. This
* overrides the default policy of starting core threads only when
* new tasks are executed.
*
* @return the number of threads started
*/
public int prestartAllCoreThreads() {
int n = 0;
while (addWorker(null, true))
++n;
return n;
}
在addWorker中 t.start() 使线程就绪,thread是怎么来的,就看下Worker的代码
Worker类的源码:
/**
* Class Worker mainly maintains interrupt control state for
* threads running tasks, along with other minor bookkeeping.
* This class opportunistically extends AbstractQueuedSynchronizer
* to simplify acquiring and releasing a lock surrounding each
* task execution. This protects against interrupts that are
* intended to wake up a worker thread waiting for a task from
* instead interrupting a task being run. We implement a simple
* non-reentrant mutual exclusion lock rather than use
* ReentrantLock because we do not want worker tasks to be able to
* reacquire the lock when they invoke pool control methods like
* setCorePoolSize. Additionally, to suppress interrupts until
* the thread actually starts running tasks, we initialize lock
* state to a negative value, and clear it upon start (in
* runWorker).
*/
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
} /** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
// Lock methods
//
// The value 0 represents the unlocked state.
// The value 1 represents the locked state.
protected boolean isHeldExclusively() {
return getState() != 0;
} protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
} protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
} public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); } void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
线程启动后就会调用run方法,也就是调用runWorker(Worker w),核心代码了,英文注释十分详细。
在执行task之前会先执行beforeExecute,task结束后执行afterExecute,pool的扩展性利用:摸我
/**
* Main worker run loop. Repeatedly gets tasks from queue and
* executes them, while coping with a number of issues:
*
* 1. We may start out with an initial task, in which case we
* don't need to get the first one. Otherwise, as long as pool is
* running, we get tasks from getTask. If it returns null then the
* worker exits due to changed pool state or configuration
* parameters. Other exits result from exception throws in
* external code, in which case completedAbruptly holds, which
* usually leads processWorkerExit to replace this thread.
*
* 2. Before running any task, the lock is acquired to prevent
* other pool interrupts while the task is executing, and
* clearInterruptsForTaskRun called to ensure that unless pool is
* stopping, this thread does not have its interrupt set.
*
* 3. Each task run is preceded by a call to beforeExecute, which
* might throw an exception, in which case we cause thread to die
* (breaking loop with completedAbruptly true) without processing
* the task.
*
* 4. Assuming beforeExecute completes normally, we run the task,
* gathering any of its thrown exceptions to send to
* afterExecute. We separately handle RuntimeException, Error
* (both of which the specs guarantee that we trap) and arbitrary
* Throwables. Because we cannot rethrow Throwables within
* Runnable.run, we wrap them within Errors on the way out (to the
* thread's UncaughtExceptionHandler). Any thrown exception also
* conservatively causes thread to die.
*
* 5. After task.run completes, we call afterExecute, which may
* also throw an exception, which will also cause thread to
* die. According to JLS Sec 14.20, this exception is the one that
* will be in effect even if task.run throws.
*
* The net effect of the exception mechanics is that afterExecute
* and the thread's UncaughtExceptionHandler have as accurate
* information as we can provide about any problems encountered by
* user code.
*
* @param w the worker
*/
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
while循环条件:先取worker自己的task,如果没有,就是上面提到addWorker时task放null的那种,就调用getTask方法。
/**
* Performs blocking or timed wait for a task, depending on
* current configuration settings, or returns null if this worker
* must exit because of any of:
* 1. There are more than maximumPoolSize workers (due to
* a call to setMaximumPoolSize).
* 2. The pool is stopped.
* 3. The pool is shutdown and the queue is empty.
* 4. This worker timed out waiting for a task, and timed-out
* workers are subject to termination (that is,
* {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
* both before and after the timed wait.
*
* @return task, or null if the worker must exit, in which case
* workerCount is decremented
*/
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out? retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c); // Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
} boolean timed; // Are workers subject to culling? for (;;) {
int wc = workerCountOf(c);
timed = allowCoreThreadTimeOut || wc > corePoolSize;//如果线程池允许线程 timeout或者当前线程数大于核心线程数,则会进行timeout的处理 if (wc <= maximumPoolSize && ! (timedOut && timed))//如果线程小于最大值,也不需要timeout判断的,就直接退出
break;
if (compareAndDecrementWorkerCount(c))//削减线程
return null;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)//状态再判断是否变化,发生变化需要重新再来
continue retry;
// else CAS failed due to workerCount change; retry inner loop
} try {
//keepAliveTime来控制获取queue中元素时的等待时间
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
至此基本了解了ThreadPoolExecutor源码。在使用是也会更明了一些。
让我们继续前行
----------------------------------------------------------------------
努力不一定成功,但不努力肯定不会成功。