Isaacs, $\textit{Character Theory of Finite Groups}$, Theorem(1.10)
Let $V$ be an $A$-module. Then $V$ is completely reducible iff it is a sum of irreducible submodules.
Pf: $\Leftarrow$
- $V=\sum V_{\alpha}$ and $W\subseteq V$
- $U\subseteq V$ maximal such that $W\cap U=0$
$\Rightarrow$
- Let $S$ be the sum of all the irreducible submodules of $V$