Minimax Triangulation

题意:

按顺序给定一些点,把这些点分割为n - 2个三角形,花费为最大三角形面积,求最小花费

分析:

区间dp,dp[i][j]表示完成区间[i,j]最小花费,dp[i][j]=min(dp[i][j],max(dp[i][k],dp[k][j],area(p[i],p[j],p[k]);(area表示三点确定面积),区间要循环考虑(首未相邻)。

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<11
#define All 1,N,1
#define read freopen("in.txt", "r", stdin)
const ll INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
const int mod = ;
struct point{
double x,y;
}p[];
int n;
double dp[][];
double area(point a,point b,point c){
return abs((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y))/2.0;
}
int judge(int a,int b,int c){
for(int i=;i<n;++i){
if(i!=a&&i!=b&&i!=c){
double tmp=area(p[a],p[b],p[i])+area(p[a],p[i],p[c])+area(p[i],p[b],p[c]);
if(abs(tmp-area(p[a],p[b],p[c]))<1e-)
return ;
}
}
return ;
}
void solve(){
double minv=INF;
for(int l=;l<n;++l)
for(int i=;i<n;++i){
int j=(i+l)%n;
dp[i][j]=INF;
for(int k=(i+)%n;k!=j;k=(k+)%n){
if(judge(i,k,j)){
dp[i][j]=min(dp[i][j],max(max(dp[i][k],dp[k][j]),area(p[i],p[k],p[j])));
}
}
if(l==n-)
minv=min(minv,dp[i][j]);
}
printf("%.1lf\n",minv);
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<n;++i)
scanf("%lf%lf",&p[i].x,&p[i].y);
solve();
}
return ;
}
上一篇:Linux 基本概念和操作2


下一篇:Objective-C 和 Core Foundation 对象相互转换的内存管理总结