M斐波那契数列
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1534 Accepted Submission(s): 435
Problem Description
M斐波那契数列F[n]是一种整数数列,它的定义如下:
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
Input
输入包含多组测试数据;
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
Output
对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。
Sample Input
01 0
6 10 2
Sample Output
0
60
60
Source
F[n] = F[n-1] * F[n-2] ---》 F[n] = F[n-2]^2* F[n-3]^1----》F[n] = F[n-3]^3* F[n-4]^2----》
F[n] = F[n-4]^5* F[n-5]^3 -----......--->F[n] = F[2]^a[n-1]* F[1]^a[n-2]; //我们可以的到处a[n]为一个斐波那契数列
但是对于这样一个式子:
F[n] = F[2]^a[n-1]* F[1]^a[n-2]; 我们依旧还是不好处理哇,毕竟n<1e9这么大,这样我们不妨引用小费马引理处理....
首先我们应该知道小费马引理的定义:
形如: (a^b)mod c = a^(b mod (c-1) ) mod c;
这样,我们就可以找到这样一个方法来做这道题:
F[n] = F[2]^a[n-1]* F[1]^a[n-2]; 可以写成 F[n] = (F[2]^(a[n-1]%(mod-1))* F[1]^(a[n-2]%(mod-1)))%mod;
可以明确的是,F[2],F[1]我们事先已经知道,所以问题在于求解a[n-1],a[n-2]由于数据巨大,为了提升效率我们可以使用矩阵快速幂来求解
对于 a[n]=a[n-1]+a[n-2] a[0]=a[1]=1; 这样的斐波那契数列,我们应该不难构造出它的矩阵来
|a[n] | =|1,1|^(n-2) |a[n-1]|
|a[n-1]| |1,0|* |a[n-2]|
得到了 a[n],a[n-1]之后我们在使用一个快速幂求解 a^b 即可。
代码:
//#define LOCAL
#include<iostream>
#include<cstdio>
#include<cstring>
#define LL __int64
using namespace std;
const int mod =; LL mat[][];
LL ans[][];
LL n,aa,bb; void Matrix(LL a[][],LL b[][])
{
LL cc[][]={};
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
for(int k=;k<;k++)
{
cc[i][j]=(cc[i][j]+a[i][k]*b[k][j])%(mod-);
}
}
}
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
a[i][j]=cc[i][j];
}
}
} void pow(LL w)
{
mat[][]=mat[][]=mat[][]=;
mat[][]=; while(w>)
{
if(w&) Matrix(ans,mat);
w>>=;
if(w==)break;
Matrix(mat,mat);
}
}
LL pow_int(LL a,LL b)
{
LL ans=;
while(b>)
{
if(b&){
ans*=a;
ans%=mod;
}
b>>=;
if(b==)break;
a*=a;
a%=mod;
}
return ans;
}
void input(LL w)
{
ans[][]=ans[][]=;
ans[][]=ans[][]=;
pow(w-);
LL fn_2=(ans[][]+ans[][])%(mod-);
pow();
LL fn_1=(ans[][]+ans[][])%(mod-);
printf("%I64d\n",(pow_int(aa,fn_2)*pow_int(bb,fn_1))%mod);
} int main()
{
#ifdef LOCAL
freopen("test.in","r",stdin);
#endif
while(scanf("%I64d%I64d%I64d",&aa,&bb,&n)!=EOF)
if(n==)printf("%I64d\n",aa);
else if(n==)printf("%I64d\n",bb);
else
input(n);
return ;
}