UVALive 6811 Irrigation Line(二分图最小点覆盖--匈牙利算法)

题意:求最少的线可以覆盖一个由0、1两种数字组成的图中所有的1。

eg:

UVALive 6811 Irrigation Line(二分图最小点覆盖--匈牙利算法)只需要两条线即可。

分析:

1、先为上述例子的行列标号

UVALive 6811 Irrigation Line(二分图最小点覆盖--匈牙利算法)

2、若图中数字为1,则代表该数字所在的行与列有关联。

例如第r1行第c3列的数字1,可以看成r1和c3为两个点,因为此处是数字1,所以这两个点之间可以连1条线

3、所以可转化为如下的二分图

UVALive 6811 Irrigation Line(二分图最小点覆盖--匈牙利算法)

4、可以简单的理解为只要图中某个位置是数字1,就可以连一条线,线的两个端点是行号和列号。

5、因此本题就转化为了,求能覆盖所有边的最少的点数

6、由上图易知,r2和c3两个点就可以覆盖所有的边,回到原题就是只要在第r2行和第c3列画上线即可覆盖所有的1

7、由二分图的性质可知,最小匹配数等于最大点覆盖数,因此用匈牙利算法求解。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) a < b ? a : b
#define Max(a, b) a < b ? b : a
typedef long long ll;
typedef unsigned long long llu;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const ll LL_INF = 0x3f3f3f3f3f3f3f3f;
const ll LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {, , -, };
const int dc[] = {-, , , };
const double pi = acos(-1.0);
const double eps = 1e-;
const int MAXN = + ;
const int MAXT = + ;
using namespace std;
char a[MAXN][MAXN];
int mp[MAXN][MAXN];
int match[MAXN];
bool used[MAXN];
int M, N;
bool Find(int x){
for(int i = ; i <= N; ++i){
if(!used[i] && mp[x][i]){
used[i] = true;
if(!match[i] || Find(match[i])){
match[i] = x;
return true;
}
}
}
return false;
}
void solve(){
int ans = ;
for(int i = ; i <= M; ++i){
memset(used, false, sizeof used);
if(Find(i)) ++ans;
}
printf("%d\n", ans);
}
int main(){
int T;
scanf("%d", &T);
for(int i = ; i <= T; ++i){
memset(a, , sizeof a);
memset(mp, , sizeof mp);
memset(match, , sizeof match);
scanf("%d%d", &M, &N);
for(int i = ; i < M; ++i){
scanf("%s", a[i]);
}
for(int i = ; i < M; ++i){
for(int j = ; j < N; ++j){
if(a[i][j] == ''){
mp[i + ][j + ] = ;
}
}
}
printf("Case #%d: ", i);
solve();
}
return ;
}
上一篇:【 D3.js 高级系列 — 1.1 】 封装文本自动换行


下一篇:Git创建本地仓库并推送至远程仓库