[LeetCode]题解(python):063-Unique Paths II

题目来源:

  https://leetcode.com/problems/unique-paths-ii/


题意分析:

  这题的规则和上一题一样。给一个m×n的矩阵0,1矩阵。0代表可以经过,1代表不可以通过。返回从(0,0)到(m,n)一共有多少种走法。


题目思路:

  这题如果还是用组合的方法做将会非常复杂,所以组合的方法不再考虑。不难发现,从(0,0)到(i,j)的所有可能等于(0,0)到(i - 1,j)和(0,0)到(i,j-1)的和。那么建立一个m×n的表a,a[i][j]代表(0,0)到(i,j)的走法。把表填满,就可以得到结果。时间复杂度是O(m×n)


代码(python):

  

 class Solution(object):
def uniquePathsWithObstacles(self, obstacleGrid):
"""
:type obstacleGrid: List[List[int]]
:rtype: int
"""
m,n = len(obstacleGrid),len(obstacleGrid[0])
ans = [[0 for i in range(n)] for j in range(m)]
ans[0][0] = 1
for i in range(m):
for j in range(n):
if obstacleGrid[i][j] == 1:
ans[i][j] = 0
elif i != 0 and j == 0:
ans[i][j] = ans[i - 1][j]
elif i == 0 and j != 0:
ans[i][j] = ans[i][j - 1]
elif i != 0 and j != 0:
ans[i][j] = ans[i -1][j] + ans[i][j - 1]
return ans[m - 1][n - 1]

转载请注明出处:http://www.cnblogs.com/chruny/p/5008277.html

上一篇:Linux计划任务及压缩归档


下一篇:关于vi不正常退出产生的swp文件