WebGPU学习(六):学习“rotatingCube”示例

大家好,本文学习Chrome->webgpu-samplers->rotatingCube示例。

上一篇博文:

WebGPU学习(五): 现代图形API技术要点和WebGPU支持情况调研

下一篇博文:

WebGPU学习(七):学习“twoCubes”和“instancedCube”示例

学习rotatingCube.ts

我们已经学习了“绘制三角形”的示例,与它相比,本示例增加了以下的内容:

  • 增加一个uniform buffer object(简称为ubo),用于传输“model矩阵 乘以 view矩阵 乘以 projection矩阵”的结果矩阵(简称为mvp矩阵),并在每帧被更新
  • 设置顶点
  • 开启面剔除
  • 开启深度测试

下面,我们打开rotatingCube.ts文件,依次来看下新增内容:

增加一个uniform buffer object

介绍

在WebGL 1中,我们通过uniform1i,uniform4fv等函数传递每个gameObject对应的uniform变量(如diffuseMap, diffuse color, model matrix等)到shader中。

其中很多相同的值是不需要被传递的,举例如下:

如果gameObject1和gameObject3使用同一个shader1,它们的diffuse color相同,那么只需要传递其中的一个diffuse color,而在WebGL 1中我们一般把这两个diffuse color都传递了,造成了重复的开销。

WebGPU使用uniform buffer object来传递uniform变量。uniform buffer是一个全局的buffer,我们只需要设置一次值,然后在每次draw之前,设置使用的数据范围(通过offset, size来设置),从而复用相同的数据。如果uniform值有变化,则只需要修改uniform buffer对应的数据。

在WebGPU中,我们可以把所有gameObject的model矩阵设为一个ubo,所有相机的view和projection矩阵设为一个ubo,每一种material(如phong material,pbr material等)的数据(如diffuse color,specular color等)设为一个ubo,每一种light(如direction light、point light等)的数据(如light color、light position等)设为一个ubo,这样可以有效减少uniform变量的传输开销。

另外,我们需要注意ubo的内存布局:

默认的布局为std140,我们可以粗略地理解为,它约定了每一列都有4个元素。

我们来举例说明:

下面的ubo对应的uniform block,定义布局为std140:

layout (std140) uniform ExampleBlock
{
float value;
vec3 vector;
mat4 matrix;
float values[3];
bool boolean;
int integer;
};

它在内存中的实际布局为:

layout (std140) uniform ExampleBlock
{
// base alignment // aligned offset
float value; // 4 // 0
vec3 vector; // 16 // 16 (must be multiple of 16 so 4->16)
mat4 matrix; // 16 // 32 (column 0)
// 16 // 48 (column 1)
// 16 // 64 (column 2)
// 16 // 80 (column 3)
float values[3]; // 16 // 96 (values[0])
// 16 // 112 (values[1])
// 16 // 128 (values[2])
bool boolean; // 4 // 144
int integer; // 4 // 148
};

也就是说,这个ubo的第一个元素为value,第2-4个元素为0(为了对齐);

第5-7个元素为vector的x、y、z的值,第8个元素为0;

第9-24个元素为matrix的值(列优先);

第25-27个元素为values数组的值,第28个元素为0;

第29个元素为boolean转为float的值,第30-32个元素为0;

第33个元素为integer转为float的值,第34-36个元素为0。

分析本示例对应的代码

  • 在vertex shader中定义uniform block

代码如下:

  const vertexShaderGLSL = `#version 450
layout(set = 0, binding = 0) uniform Uniforms {
mat4 modelViewProjectionMatrix;
} uniforms;
...
void main() {
gl_Position = uniforms.modelViewProjectionMatrix * position;
fragColor = color;
}
`;

布局为默认的std140,指定了set和binding,包含一个mvp矩阵

其中set和binding用来对应相应的数据,会在后面说明

  • 创建uniformsBindGroupLayout

代码如下:

  const uniformsBindGroupLayout = device.createBindGroupLayout({
bindings: [{
binding: 0,
visibility: 1,
type: "uniform-buffer"
}]
});

binding对应vertex shader中uniform block的binding,意思是bindings数组的第一个元素的对应binding为0的uniform block

visibility为GPUShaderStage.VERTEX(等于1),指定type为“uniform-buffer”

  • 创建uniform buffer

代码如下:

  const uniformBufferSize = 4 * 16; // BYTES_PER_ELEMENT(4) * matrix length(4 * 4 = 16)

  const uniformBuffer = device.createBuffer({
size: uniformBufferSize,
usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST,
});
  • 创建uniform bind group

代码如下:

  const uniformBindGroup = device.createBindGroup({
layout: uniformsBindGroupLayout,
bindings: [{
binding: 0,
resource: {
buffer: uniformBuffer,
},
}],
});

binding对应vertex shader中uniform block的binding,意思是bindings数组的第一个元素的对应binding为0的uniform block

  • 每一帧更新uniform buffer的mvp矩阵数据

代码如下:

  //因为是固定相机,所以只需要计算一次projection矩阵
const aspect = Math.abs(canvas.width / canvas.height);
let projectionMatrix = mat4.create();
mat4.perspective(projectionMatrix, (2 * Math.PI) / 5, aspect, 1, 100.0); ... //计算mvp矩阵
function getTransformationMatrix() {
let viewMatrix = mat4.create();
mat4.translate(viewMatrix, viewMatrix, vec3.fromValues(0, 0, -5));
let now = Date.now() / 1000;
mat4.rotate(viewMatrix, viewMatrix, 1, vec3.fromValues(Math.sin(now), Math.cos(now), 0)); let modelViewProjectionMatrix = mat4.create();
mat4.multiply(modelViewProjectionMatrix, projectionMatrix, viewMatrix); return modelViewProjectionMatrix;
} ...
return function frame() {
//使用setSubData更新uniform buffer,后面分析
uniformBuffer.setSubData(0, getTransformationMatrix());
...
}
  • draw之前设置bind group

代码如下:

  return function frame() {
...
//“0”对应vertex shader中uniform block的“set = 0”
passEncoder.setBindGroup(0, uniformBindGroup);
passEncoder.draw(36, 1, 0, 0);
...
}

详细分析“更新uniform buffer”

本示例使用setSubData来更新uniform buffer:

  return function frame() {
uniformBuffer.setSubData(0, getTransformationMatrix());
...
}

我们在WebGPU学习(五): 现代图形API技术要点和WebGPU支持情况调研->Approaching zero driver overhead->persistent map buffer中,提到了WebGPU目前有两种方法实现“CPU把数据传输到GPU“,即更新GPUBuffer的值:

1.调用GPUBuffer->setSubData方法

2.使用persistent map buffer技术

这里使用了第1种方法。

我们看下如何在本示例中使用第2种方法:

function setBufferDataByPersistentMapBuffer(device, commandEncoder, uniformBufferSize, uniformBuffer, mvpMatricesData) {
const [srcBuffer, arrayBuffer] = device.createBufferMapped({
size: uniformBufferSize,
usage: GPUBufferUsage.COPY_SRC
}); new Float32Array(arrayBuffer).set(mvpMatricesData);
srcBuffer.unmap(); commandEncoder.copyBufferToBuffer(srcBuffer, 0, uniformBuffer, 0, uniformBufferSize);
const commandBuffer = commandEncoder.finish(); const queue = device.defaultQueue;
queue.submit([commandBuffer]); srcBuffer.destroy();
} return function frame() {
//uniformBuffer.setSubData(0, getTransformationMatrix());
... const commandEncoder = device.createCommandEncoder({}); setBufferDataByPersistentMapBuffer(device, commandEncoder, uniformBufferSize, uniformBuffer, getTransformationMatrix());
...
}

为了验证性能,我做了benchmark测试,创建一个包含160000个mat4的ubo,使用这2种方法来更新uniform buffer,比较它们的js profile:

使用setSubData(调用setBufferDataBySetSubData函数):

WebGPU学习(六):学习“rotatingCube”示例

setSubData占91.54%

使用persistent map buffer(调用setBufferDataByPersistentMapBuffer函数):

WebGPU学习(六):学习“rotatingCube”示例

createBufferMapped和setBufferDataByPersistentMapBuffer占72.72+18.06=90.78%

可以看到两个的性能差不多。但考虑到persistent map buffer从实现原理上要更快(cpu和gpu共用一个buffer,不需要copy),因此应该优先使用该方法。

另外,WebGPU社区现在还在讨论如何优化更新buffer数据(如有人提出增加GPUUploadBuffer pass),因此我们还需要继续关注该方面的进展。

参考资料

Advanced-GLSL->Uniform buffer objects

设置顶点

  • 传输顶点的position和color数据到vertex shader的attribute(在glsl 4.5中用“in”表示attribute)中

代码如下:

  const vertexShaderGLSL = `#version 450
...
layout(location = 0) in vec4 position;
layout(location = 1) in vec4 color;
layout(location = 0) out vec4 fragColor;
void main() {
gl_Position = uniforms.modelViewProjectionMatrix * position;
fragColor = color;
} const fragmentShaderGLSL = `#version 450
layout(location = 0) in vec4 fragColor;
layout(location = 0) out vec4 outColor;
void main() {
outColor = fragColor;
}
`;

在vertex shader中设置color为fragColor(在glsl 4.5中用“out”表示WebGL 1的varying变量),然后在fragment shader中接收fragColor,将其设置为outColor,从而将fragment的color设置为对应顶点的color

  • 创建vertices buffer,设置立方体的顶点数据

代码如下:

cube.ts:

//每个顶点包含position,color,uv数据
//本示例没用到uv数据
export const cubeVertexArray = new Float32Array([
// float4 position, float4 color, float2 uv,
1, -1, 1, 1, 1, 0, 1, 1, 1, 1,
-1, -1, 1, 1, 0, 0, 1, 1, 0, 1,
-1, -1, -1, 1, 0, 0, 0, 1, 0, 0,
1, -1, -1, 1, 1, 0, 0, 1, 1, 0,
1, -1, 1, 1, 1, 0, 1, 1, 1, 1,
-1, -1, -1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, 1, 1, 1, 0, 1, 1, 0, 1,
1, -1, -1, 1, 1, 0, 0, 1, 0, 0,
1, 1, -1, 1, 1, 1, 0, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, 1, 1, 0, 0, 1, 0, 0, -1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, -1, 1, 1, 1, 0, 1, 0, 0,
-1, 1, -1, 1, 0, 1, 0, 1, 1, 0,
-1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1, 1, -1, 1, 1, 1, 0, 1, 0, 0, -1, -1, 1, 1, 0, 0, 1, 1, 1, 1,
-1, 1, 1, 1, 0, 1, 1, 1, 0, 1,
-1, 1, -1, 1, 0, 1, 0, 1, 0, 0,
-1, -1, -1, 1, 0, 0, 0, 1, 1, 0,
-1, -1, 1, 1, 0, 0, 1, 1, 1, 1,
-1, 1, -1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1, 1, 1, 1, 0, 1, 1, 1, 0, 1,
-1, -1, 1, 1, 0, 0, 1, 1, 0, 0,
-1, -1, 1, 1, 0, 0, 1, 1, 0, 0,
1, -1, 1, 1, 1, 0, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 0, 0, 1, 1, 1,
-1, -1, -1, 1, 0, 0, 0, 1, 0, 1,
-1, 1, -1, 1, 0, 1, 0, 1, 0, 0,
1, 1, -1, 1, 1, 1, 0, 1, 1, 0,
1, -1, -1, 1, 1, 0, 0, 1, 1, 1,
-1, 1, -1, 1, 0, 1, 0, 1, 0, 0,
]);
rotatingCube.ts:

  const verticesBuffer = device.createBuffer({
size: cubeVertexArray.byteLength,
usage: GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_DST
});
verticesBuffer.setSubData(0, cubeVertexArray);

因为只需要设置一次顶点数据,所以这里可以使用setSubData来设置GPUBuffer的数据,对性能影响不大

  • 创建render pipeline时,指定vertex shader的attribute

代码如下:

cube.ts:

export const cubeVertexSize = 4 * 10; // Byte size of one cube vertex.
export const cubePositionOffset = 0;
export const cubeColorOffset = 4 * 4; // Byte offset of cube vertex color attribute.
rotatingCube.ts:

  const pipeline = device.createRenderPipeline({
...
vertexState: {
vertexBuffers: [{
arrayStride: cubeVertexSize,
attributes: [{
// position
shaderLocation: 0,
offset: cubePositionOffset,
format: "float4"
}, {
// color
shaderLocation: 1,
offset: cubeColorOffset,
format: "float4"
}]
}],
},
...
});
  • render pass->draw指定顶点个数为36

代码如下:

  return function frame() {
...
const passEncoder = commandEncoder.beginRenderPass(renderPassDescriptor);
...
passEncoder.draw(36, 1, 0, 0);
passEncoder.endPass();
...
}

开启面剔除

相关代码为:

  const pipeline = device.createRenderPipeline({
...
rasterizationState: {
cullMode: 'back',
},
...
});

相关的定义为:

enum GPUFrontFace {
"ccw",
"cw"
};
enum GPUCullMode {
"none",
"front",
"back"
};
... dictionary GPURasterizationStateDescriptor {
GPUFrontFace frontFace = "ccw";
GPUCullMode cullMode = "none";
...
};

其中ccw表示逆时针,cw表示顺时针;frontFace用来设置哪个方向是“front”(正面);cullMode用来设置将哪一面剔除掉。

因为本示例没有设置frontFace,因此frontFace为默认的ccw,即将顶点连接的逆时针方向设置为正面;

又因为本示例设置了cullMode为back,那么反面的顶点(即顺时针连接的顶点)会被剔除掉。

参考资料

[WebGL入门]六,顶点和多边形

Investigation: Rasterization State

开启深度测试

现在分析相关代码,忽略与模版测试相关的代码:

  • 创建render pipeline时,设置depthStencilState

代码如下:

  const pipeline = device.createRenderPipeline({
...
depthStencilState: {
//开启深度测试
depthWriteEnabled: true,
//设置比较函数为less,后面会说明
depthCompare: "less",
//设置depth为24bit
format: "depth24plus-stencil8",
},
...
});
  • 创建depth texture(注意它的size->depth为1),将它的view设置为render pass -> depthStencilAttachment -> attachment

代码如下:

  const depthTexture = device.createTexture({
size: {
width: canvas.width,
height: canvas.height,
depth: 1
},
format: "depth24plus-stencil8",
usage: GPUTextureUsage.OUTPUT_ATTACHMENT
}); const renderPassDescriptor: GPURenderPassDescriptor = {
...
depthStencilAttachment: {
attachment: depthTexture.createView(), depthLoadValue: 1.0,
depthStoreOp: "store",
...
}
};

其中,depthStencilAttachment的定义为:

dictionary GPURenderPassDepthStencilAttachmentDescriptor {
required GPUTextureView attachment; required (GPULoadOp or float) depthLoadValue;
required GPUStoreOp depthStoreOp;
...
};

depthLoadValue和depthStoreOp与WebGPU学习(二): 学习“绘制一个三角形”示例->分析render pass->colorAttachment的loadOp和StoreOp类似,我们来看下相关的代码:


const pipeline = device.createRenderPipeline({
...
depthStencilState: {
...
depthCompare: "less",
...
},
...
}); ... const renderPassDescriptor: GPURenderPassDescriptor = {
...
depthStencilAttachment: {
...
depthLoadValue: 1.0,
depthStoreOp: "store",
...
}
};

在深度测试时,gpu会将fragment的z值(范围为[0.0-1.0])与这里设置的depthLoadValue值(这里为1.0)比较。其中使用depthCompare定义的函数(这里为less,意思是所有z值大于等于1.0的fragment会被剔除)进行比较。

参考资料

Depth testing

最终渲染结果

WebGPU学习(六):学习“rotatingCube”示例

参考资料

WebGPU规范

webgpu-samplers Github Repo

WebGPU-5

上一篇:WebGPU学习(五): 现代图形API技术要点和WebGPU支持情况调研


下一篇:WebGPU+光线追踪Ray Tracing 开发三个月总结