Remainder Problem
题面:
You are given an array a consisting of 500000 integers (numbered from 1 to 500000). Initially all elements of a are zero.
You have to process two types of queries to this array:
1 x y — increase ax by y;
2 x y — compute ∑i∈R(x,y)ai, where R(x,y) is the set of all integers from 1 to 500000 which have remainder y modulo x.
Can you process all the queries?
题意:
给你一个长度500000的数组,有两个操作
1 x y 将a[ x ] +=y;
2 x y 将所有下标%x==y的位置所在的数相加并输出
思路: 每次将模数小于720的预处理,若是所询问模数大于sqrt(500000)直接暴力统计
#include<bits/stdc++.h>
using namespace std;
const int maxl=500010;
int q,n=maxl-10,len,cnt;
long long ans;
int a[maxl];
long long val[720][720];
int main()
{
len=sqrt(n);
cnt=cnt/len+1;
scanf("%d",&q);
int op,x,y;
for(int i=1;i<=q;i++)
{
scanf("%d%d%d",&op,&x,&y);
if(op==1)
{
a[x]+=y;
for(int i=1;i<720;i++)
val[i][x%i]+=y;
}
else
{
ans=0;
if(x<720)
ans=val[x][y];
else
{
for(int i=0;i*x+y<=n;i++)
ans+=a[i*x+y];
}
printf("%lld\n",ans);
}
}
return 0;
}