【LOJ】#3096. 「SNOI2019」数论

LOJ#3096. 「SNOI2019」数论

如果\(P > Q\)我们把\(P\)和\(Q\)换一下,现在默认\(P < Q\)

这个时候每个合法的\(a_i\)都可以直接落到\(Q\)中,因为\(a_{i} \equiv a_{i} \pmod Q\)这样避免了麻烦

然后呢我们发现每次把\((a_{i} + P) \% Q\)会走成一个圈,我们就要求从\(a_{i}\)开始数\(\lfloor \frac{T - 1- a_{i}}{P} \rfloor + 1\)个圈里\(b_{i}\)的总和

这样的话可以断圈为链,复制两份就可以快速查某一段开始走小于圈长步的总和了

这样的圈一共有\(gcd(P,Q)\)个

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define ba 47
#define MAXN 1000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int P,Q,n,m;
int A[MAXN],B[MAXN];
int sum[MAXN * 2],pos[MAXN * 2],tot;
bool vis[MAXN];
int64 ans,T;
int gcd(int a,int b) {
return b == 0 ? a : gcd(b,a % b);
}
void Solve() {
read(P);read(Q);read(n);read(m);read(T);
int x;
for(int i = 1 ; i <= n ; ++i) {
read(x);A[x] = 1;
}
for(int i = 1 ; i <= m ; ++i) {
read(x);B[x] = 1;
}
if(P > Q) {
swap(P,Q);
for(int i = 0 ; i <= 1000000 ; ++i) swap(A[i],B[i]);
}
int g = gcd(P,Q);
for(int i = 0 ; i < g ; ++i) {
for(int j = 1 ; j <= tot ; ++j) sum[j] = 0;
tot = 0;
int x = i;
while(!vis[x]) {
sum[tot + 1] = B[x] + sum[tot];
pos[tot + 1] = x;
++tot;
vis[x] = 1;
x = (x + P) % Q;
}
int t = tot;
for(int j = 1 ; j <= t ; ++j) {
if(pos[j] < P && A[pos[j]]) {
if(T - 1 - pos[j] >= 0) {
int64 all = (T - 1 - pos[j]) / P + 1;
int64 cnt = all / t;
ans += cnt * sum[t];
int rem = all % t;
if(rem) {
ans += sum[j + rem - 1] - sum[j - 1];
}
}
}
sum[tot + 1] = sum[tot] + B[x];++tot;
x = (x + P) % Q;
}
}
out(ans);enter;
}
int main(){
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
上一篇:Oracle实现递归查询


下一篇:【LOJ】#3098. 「SNOI2019」纸牌