假设检验(Hypothesis Testing)
1. 什么是假设检验呢?
假设检验又称为统计假设检验,是数理统计中根据一定假设条件由样本推断总体的一种方法。
什么意思呢,举个生活中的例子:买橘子(借用http://www.360doc.com/content/16/0617/08/31718185_568436468.shtml)
当我们去买橘子的时候,无论甜不甜,老板都会说:“挺甜的,不信拿一个尝尝”。我们随手拿一个(这就相当于抽样),此时我们对于这些橘子甜或不甜的判断全基于这个橘子(样本),为什么不拿总体来判断呢?老板能让你把橘子都吃一遍?(大多数情况下无法直接对总体进行判断)。当我们吃到的橘子是甜的,我们会想,随便拿一个就是甜的,那么这些橘子大部分都是甜的;当我们吃到的是酸的,我们会想,随便拿一个就是酸的,我运气有那么不好吗,肯定是大部分橘子都是酸的。
假设检验就是对总体(全部橘子)提出假设(甜或不甜),然后通过样本(随便拿一个橘子)进行统计计算,来推断假设是否成立的一种方法。
2.假设检验的依据是什么呢?
假设检验重要的依据是人们的一条普遍经验,即小概率事件在一次实验中很难发生,如果一旦发生,就认为原来的假设不成立,从而拒绝H0。
例如, 某彩票抽奖处声称该彩票中奖概率为p(A) = 99.99%,现在我们做出如下假设
若假设H0正确,则抽奖一次不中奖的概率为0.01%,这是一个小概率事件。那么我们通过抽奖一次,来检验该假设。
假设检验的基本思想:先对总体的参数或分布函数的表达式作出某种假设,然后构造出一个在假设成立下出现可能性甚小的事件(即小概率事件)。如果试验或抽样的结果使该小概率事件出现了,这与小概率事件原理相违背,表明原来的假设有问题,应予以否定,即拒绝这个假设;若该小概率事件在一次试验或抽样中并未出现,就没有理由否定这个假设,表明试验或抽样结果支持这个假设,这时假设与实验结果是一致的,或者说可以接受这个假设。
但是,我们要注意的是:在假设检验中“拒绝”和“接受”反映了决策者在所面对的样本证据下,对该命题所采取的一种态度、倾向性,而不是在逻辑上“证明”该命题正确与否!又回到刚开始买橘子的例子,我们在拿一个尝过后,对所有橘子下的结论(大部分是甜的或者大部分是酸的)都是我们的主观猜想,而非客观事实。
3.怎么做假设检验呢?
假设检验的一般步骤为:
(I)跟据实际问题提出零假设(H0)与备择假设(H1);
(II)选择合适的检验统计量,并确定在H0为真时的分布;
(III)给定显著性水平α,确定临界点,得到接受域和否定域;
(IV)计算检验统计量的样本值;
(V)做出判断,若值落在否定域,则拒绝H0;若落在接受域,则在所选择的显著性水平上,不能拒绝H0。
假设
我们将对总体提出的某种假设称为零假设(也称原假设),记为H0;将与原假设矛盾的假设称为备择假设(也称对立假设),记为H1.
零假设是一种无差别假设,表示要被拒绝的目的。备择假设是与H0相反的结论。若H0被拒绝,H1就可能被接受。比如,研究两种药物对治疗同一种疾病的效果不同。这个结论就是要研究的假设,为了检验该假设,我们假设用μ表示药物对疾病的治疗效果,写出原假设H0:μ1 = μ2(相同的治疗效果);备择假设H1:μ1 ≠ μ2(不同的治疗效果)。如果得到的信息拒绝H0,则可以接受H1,即两种药物对同一疾病的治疗效果是不同的。
H1的叙述是由研究假设的性质确定的。若研究假设只是考察两个事物有差异,则备择假设H1:μ1 ≠ μ2;若考察其差值的方向,则H1或者为μ1 > μ2,或者为μ1 < μ2。
我们称形如
H0 : μ1 = μ2 , H1 : μ1 ≠ μ2
的假设检验为双边检验;
形如
H0 : μ1 ≥ μ2 , H1 : μ1 < μ2
的假设检验为左边检验;
形如
H0 : μ1 ≤ μ2 , H1 : μ1 > μ2
的假设检验为右边检验。
左边检验和右边检验统称为单边检验。
显著性水平
前面说到假设检验的依据是小概率事件原理,但是,很难发生并不等于绝不发生,因此,在得出对H0的判定时,可能会发生两类错误:第一类错误是当H0实际上为真时拒绝H0;第二类错误是当H0实际为假时接受H0。第一类错误是“以真为假”的错误,犯第一类错误的概率由α给出,α越大,H0越容易错误地被拒绝;第二类错误是“以假为真”的错误,犯第二类错误的概率通常用β表示。可以发现犯这两类错误的概率之间存在反比关系,所以,在样本量确定为n时,α减小会使β增大。若希望同时减小犯两类错误的可能性,必须增加样本数目n。
定义α:当原假设H0为真时,假设检验统计量的样本值却落在接受域之外,因而拒绝原假设H0,这类错误称为第一类错误,其发生的概率称为犯第一类错误的概率或称弃真概率,通常记为α,即
P(拒绝H0 | H0为真) = α
定义β:当原假设H0为不真时,假设检验统计量的样本值却落在接受域之内,因而接受原假设H0,这类错误称为第二类错误,其发生的概率称为犯第二类错误的概率或称存伪概率,通常记为β,即
P(接受H0 | H0不真) = β
在实际应用时,我们通常只能控制犯第一类错误的概率,也就是错误地拒绝H0的概率,这个概率就叫做显著性水平。一般检验时,取α = 0.05,α = 0.01较多。为了保证β不至于太大,样本数量不能太少在。在生物信息学里,样本量是很大的,所以β也会很小,因此重点关注α。
否定域
我们将拒绝零假设H0的区域称为拒绝域。否定域的大小与显著性水平α的选取有关。
否定域的位置(不是大小)与备择假设H1的性质有关。若H1是指出预定方向的,如H1:μ > μ0,则假设检验为单边检验;若H1未指出预定的方向,如H1:μ≠μ0,则为双边检验。图1.1是α=0.05的单边检验否定域,图1.2是α=0.05的双边检验否定域。可以看出,对于同一显著性水平α,两种否定域的位置不同,但总的大小并没有什么不同。
在进行统计检验时,若根据样本数据计算的统计量数值落入否定域,则认为零假设H0不成立,称作在显著性水平α下拒绝H0;否则认为零假设H0不成立,称作在显著性水平α下不能拒绝H0.
参考 《非参数统计》易丹辉