「PKUWC2018」随机游走(min-max容斥+FWT)
以后题目都换成这种「」形式啦,我觉得好看。
做过重返现世的应该看到就想到 \(min-max\) 容斥了吧。
没错,我是先学扩展形式再学特殊形式的。
\[E(\text{max}(S))=\sum_{T\subseteq S}(-1)^{|T|+1}E(\text{min}(T))
\]
\]
问题转化之后,然后我们可以枚举所有状态然后 \(O(n)\) 树形 \(dp\)
\(-1\) 那项可以 \(O(2^n)\) 推出来,接下来就是子集变换了。可以 \(O(n2^n)\) \(FWT\) 或者 \(O(3^n)\) 暴力枚举,自己喜欢哪种就上吧。
\(Code\ Below:\)
#include <bits/stdc++.h>
using namespace std;
const int mod=998244353;
int n,q,rt,lim,bin[20],a[20],b[20],d[20],f[1<<18],g[1<<18];
vector<int> G[20];
inline int fpow(int a,int b){
int ret=1;
for(;b;b>>=1,a=1ll*a*a%mod)
if(b&1) ret=1ll*ret*a%mod;
return ret;
}
void dfs(int x,int f,int S){
if(S&bin[x]) return ;
a[x]=d[x];b[x]=1;
int tmp=1,y;
vector<int>::iterator it;
for(it=G[x].begin();it!=G[x].end();it++){
y=*it;
if(y==f) continue;
dfs(y,x,S);
tmp=(tmp-1ll*a[y]*d[x]%mod+mod)%mod;
b[x]=(b[x]+1ll*b[y]*d[x]%mod)%mod;
}
tmp=fpow(tmp,mod-2);
a[x]=1ll*a[x]*tmp%mod;
b[x]=1ll*b[x]*tmp%mod;
}
inline void FWT(){
for(int len=1;len<lim;len<<=1)
for(int i=0;i<lim;i++)
if(i&len) f[i]=(f[i]+f[i^len])%mod;
}
int main()
{
scanf("%d%d%d",&n,&q,&rt);
rt--;lim=1<<n;bin[0]=1;
for(int i=1;i<=n;i++) bin[i]=bin[i-1]<<1;
int x,y,k,S;
for(int i=0;i<n-1;i++){
scanf("%d%d",&x,&y);
x--;y--;
G[x].push_back(y);
G[y].push_back(x);
d[x]++;d[y]++;
}
for(int i=0;i<n;i++) d[i]=fpow(d[i],mod-2);
for(int i=0;i<lim;i++){
for(int j=0;j<n;j++) a[j]=b[j]=0;
dfs(rt,-1,i);f[i]=b[rt];
}
g[0]=-1;
for(int i=1;i<lim;i++) g[i]=g[i>>1]*((i&1)?-1:1);
for(int i=0;i<lim;i++){
f[i]*=g[i];
if(f[i]<0) f[i]+=mod;
}
FWT();
while(q--){
scanf("%d",&k);S=0;
for(int i=1;i<=k;i++){
scanf("%d",&x);
S|=bin[x-1];
}
printf("%d\n",f[S]);
}
return 0;
}