LOJ6089 小Y的背包计数问题 背包、根号分治

题目传送门

题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模。$N \leq 10^5$


$23333333=17 \times 1372549$竟然不是质数性质太不优秀了(雾

直接跑背包$O(N^2)$,于是咱们考虑挖掘性质、分开计算

发现当$i < \sqrt{N}$时就是一个多重背包,用单调队列优化到$O(N \sqrt{N})$

而当$i \geq \sqrt{N}$时,选中物品的数量不会超过$\sqrt{N}$,又因为最小的物品大小为$\sqrt{N}$,所以我们可以设计一个DP:

设$dp_{i,j}$为放了$i$个物品,其中物品总重量为$j$时的方案总数,有

$$dp_{i,j}=dp_{i-1,j-\sqrt{N}}+dp_{i,j-i}$$

也就是两种转移:①多加一个$\sqrt{N}$②给所有物品$+1$

总复杂度为$O(N\sqrt{N})$

 #include<bits/stdc++.h>
 #define MOD 23333333
 #define MAXN 100001
 using namespace std;

 } , g[][MAXN] = {} , allG[MAXN] = {};

 int main(){
      , dir = ;
     cin >> N;
     T = sqrt(N);
      ; i <= T ; i++)
          ; j < i ; j++){
              , t = N / i * i + j;
             if(t > N)
                 t -= i;
             int now = t;
              ; k <= i && t >=  ; k++){
                 sum = (sum + f[t]) % MOD;
                 t -= i;
             }
             ){
                 int q = f[now];
                 f[now] = sum;
                 sum = (sum - q + MOD) % MOD;
                 now -= i;
                 ){
                     sum = (sum + f[t]) % MOD;
                     t -= i;
                 }
             }
         }
      ; i <= T ; i++){
         dir ^= ;
         memset(g[dir] ,  , sizeof(g[dir]));
          ; j <= N ; j++){
             g[dir][j] = (g[dir ^ ][j - (T + )] + g[dir][j - i]) % MOD;
             allG[j] = (allG[j] + g[dir][j]) % MOD;
         }
     }
      ; i <= N ; i++)
         ans = (ans + (long long)allG[i] * f[N - i]) % MOD;
     cout << ans;
     ;
 }
上一篇:Android 高仿微信头像截取 打造不一样的自定义控件


下一篇:Listener