一、题目链接
https://www.nowcoder.com/acm/contest/117/B
二、题意
给定一组序列$a_1,a_2,\cdots,a_n$,表示初始序列$b_1,b_2,\cdots,b_n$经过$k$次变换得到的序列,让你输出输出序列$b_1,b_2,\dots,b_n$。
变换的规则是:
在每一轮中,把$b_i$加到$b_{i+1}$上($1 \le i < n$),同时对$10^9+7$取模。做$k$轮。最后得到$a_1,a_2,\cdots,a_n$。
三、思路
列出计算步骤,得到如下表格:
$k$ | $b_1$ | $b_2$ | $b_3$ | $\cdots$ | $b_n$ |
$1$ | $b_1$ | $b_1+b_2$ | $b_1+b_2+b_3$ | $\cdots$ | $\sum\limits_{i=1}^{n}b_i$ |
$2$ | $b_1$ | $2*b_1+b_2$ | $3*b_1+2*b_2+b_3$ | $\cdots$ | 上一行的和 |
$3$ | $b_1$ | $3*b_1+b_2$ | $6*b_1+3*b_2+b_3$ | $\cdots$ | 上一行的和 |
$\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
拿$b_i$来找规律。可以发现,它的多项式系数与$k$的关系。从大到小的系数为如下表格:
$j=1$ | $1$ | $2$ | $3$ | $6$ | $\cdots$ | $k$ |
$j=2$ | $1$ | $3$ | $6$ | $10$ | $\cdots$ | $\frac{(1+k)*k}{2}$ |
$j=3$ | $1$ | $4$ | $10$ | $20$ | $\cdots$ | $\cdots$ |
$\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
$j=n$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
其中,$j$为到$i$的距离,且$j<i$。然后,把它转化成如下表格:
$j=1$ | $C_1^1$ | $C_2^1$ | $C_3^1$ | $C_4^1$ | $\cdots$ | $C_k^1$ |
$j=2$ | $C_2^2$ | $C_3^2$ | $C_4^2$ | $C_5^2$ | $\cdots$ | $C_{k+1}^2$ |
$j=3$ | $C_3^3$ | $C_4^3$ | $C_5^3$ | $C_6^3$ | $\cdots$ | $C_{k+2}^3$ |
$\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
$j=n$ | $C_n^n$ | $C_{n+1}^n$ | $C_{n+2}^n$ | $C_{n+3}^n$ | $\cdots$ | $C_{k+n-1}^n$ |
有了上述表格后,用lucas定理求出最后一列,时间复杂度$O(N^2*log(10^9+7))$,再$O(N^2)$复杂度求出每一项的初始值$b_i$即可。所以,总的复杂度为$O(T*N^2*log(10^9+7))$。
注意,这题卡常卡的很厉害,需要对$k$分情况处理。如果$k$较小,$k \le 1000$,直接暴力。否则,用算法。
另外,还要注意$k=0$的情况。
求$C_n^m$,用的是这个式子:$C_n^m=\frac{n!}{(n-m)!*m!}=\frac{A_n^m}{m!}=\prod\limits_{i=1}^{m}\frac{n-m+i}{i}$
四、代码
/*---------------------template head-----------------------------*/ #include<bits/stdc++.h> using namespace std; #define pb(x) push_back(x) #define mk(x, y) make_pair(x, y) #define pln() putchar('\n') #define cln() (cout << '\n') #define fst first #define snd second #define MOD 1000000007LL typedef long long LL; typedef pair<int, int> PII; typedef pair<LL, LL> PLL; ; template <class T> inline void read(T &x) { int t; bool flag = false; ')) ; '; + t - '; if(flag) x = -x; } template<class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; } /*---------------------template head-----------------------------*/ LL quick_mod(LL a, LL b, LL p) { LL ans = ; a %= p; while(b) { )ans = ans * a % p; a = a * a % p; b >>= ; } return ans % p; } LL C(LL n, LL m, LL p) { ; LL ans = ; ; i <= m; i++) { LL a = (n + i - m) % p; LL b = i % p; ans = ans * (a * quick_mod(b, p - , p) % p) % p; } return ans % p; } LL lucas(LL n, LL m, LL p) { ) ; return C(n % p, m % p, p) * lucas(n / p, m / p, p) % p; } LL NN, K, a[MAXN], ans[MAXN], cc[MAXN], buf[MAXN]; int main() { //freopen("input.txt", "r", stdin); // freopen("output.txt", "w", stdout); int T; for(scanf("%d", &T); T--;) { read(NN), read(K); ; i <= NN; ++i)read(a[i]); )memcpy(ans + , a + , ]) * NN); ) { ans[] = a[]; memcpy(buf + , a + , ]) * NN); ; i < K; ++i) { ; j <= NN; ++j) { ans[j] = (buf[j] - buf[j - ] + MOD) % MOD; ans[j] = (ans[j] + MOD) % MOD; } memcpy(buf + , ans + , ]) * NN); } } else { ; i <= NN; ++i)cc[i] = lucas(K + i - , i, MOD) % MOD; ans[] = a[]; ; i <= NN; ++i) { LL sum = ; , p = i - ; p >= ; j++, p--) { sum = (sum + cc[j] * ans[p]) % MOD; } ans[i] = (a[i] - sum + MOD) % MOD; ans[i] = (ans[i] + MOD) % MOD; } } ; i <= NN; ++i)printf("%lld%c", ans[i], i == NN ? '\n' : ' '); } ; }