solution
已 知 d p i [ n ] = 0 , ( i = 1 , 2 ) 已知~dp_i[n]=0,(i=1,2) 已知 dpi[n]=0,(i=1,2)
d p 1 [ i ] = d p 1 [ i + 1 ] ∗ 5 6 + d p 1 [ 1 ] ∗ 1 6 + 1 dp_1[i]=dp_1[i+1]*\frac56+dp_1[1]*\frac16+1 dp1[i]=dp1[i+1]∗65+dp1[1]∗61+1
= > d p 1 [ n ] − ( d p 1 [ 1 ] + 5 6 ) = 6 [ d p 1 [ n − 1 ] − ( d p 1 [ 1 ] + 5 6 ) ] , d p 1 [ 0 ] = d p 1 [ 1 ] + 1 =>dp_1[n]-(dp_1[1]+\frac56)=6[dp_1[n-1]-(dp_1[1]+\frac56)],dp_1[0]=dp_1[1]+1 =>dp1[n]−(dp1[1]+65)=6[dp1[n−1]−(dp1[1]+65)],dp1[0]=dp1[1]+1
= > d p 1 [ n ] − d p 1 [ 1 ] − 6 5 = − 6 n 5 =>dp_1[n]-dp_1[1]-\frac65=-\frac{6^n}{5} =>dp1[n]−dp1[1]−56=−56n
= > d p 1 [ 1 ] + 6 5 = 6 n 5 = > d p 1 [ 0 ] = 6 n − 1 5 =>dp_1[1]+\frac65=\frac{6^n}{5}=>dp_1[0]=\frac{6^n-1}5 =>dp1[1]+56=56n=>dp1[0]=56n−1
同理,
d p 2 [ 0 ] = 6 ∗ 6 n − 1 5 dp_2[0]=6*\frac{6^n-1}5 dp2[0]=6∗56n−1
显 然 G ( n ) = 6 ∗ n 显然G(n)=6*n 显然G(n)=6∗n
求 最 小 的 M 1 , M 2 使 得 , G ( M 1 ) > = F ( N ) , G ( M 2 ) > = H ( N ) , 求最小的M_1,M_2使得,G (M_1) >= F (N),G(M_2)>=H(N), 求最小的M1,M2使得,G(M1)>=F(N),G(M2)>=H(N),
其 中 F ( N ) = d p 1 [ 0 ] , H ( N ) = d p 2 [ 0 ] . 其中F(N)=dp_1[0],H(N)=dp_2[0]. 其中F(N)=dp1[0],H(N)=dp2[0].
于是有,
M 1 > = c e i l ( 6 n − 1 30 ) = 6 n + 24 30 , M 2 > = 6 n − 1 5 M_1>=ceil(\frac{6^n-1}{30})=\frac{6^n+24}{30},M_2>=\frac{6^n-1}5 M1>=ceil(306n−1)=306n+24,M2>=56n−1
code
/*Siberian Squirrel*/
/*Cute JinFish*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI = acos(-1), eps = 1e-6;
/*const int MOD = 998244353, r = 119, k = 23, g = 3;
const int MOD = 1004535809, r = 479, k = 21, g = 3;*/
const int INF = 0x3f3f3f3f, MOD = 2011;
const int M = 3e2 + 10, N = 5e6 + 10;
int sgn(double x) {
if(fabs(x) < eps) return 0;
return x < 0? -1: 1;
}
//inline int rnd(){static int seed=2333;return seed=(((seed*666666ll+20050818)%998244353)^1000000007)%1004535809;}
//double Rand() {return (double)rand() / RAND_MAX;}
ll n;
ll quick_pow(ll ans, ll p, ll res = 1) {
ans %= MOD, p %= MOD - 1;
for(; p; p >>= 1, ans = ans * ans % MOD)
if(p & 1) res = res * ans % MOD;
return res % MOD;
}
ll inv(ll ans) {
return quick_pow(ans, MOD - 2);
}
void init() {}
void solve(double _p = 0) {
cout << ((quick_pow(6, n) + 24 + MOD) % MOD * inv(30) % MOD) << ' ';
cout << (quick_pow(6, n) - 1 + MOD) % MOD * inv(5) % MOD << endl;
}
/*
*/
int main() {
// ios::sync_with_stdio(false);cin.tie(0);cout.tie(nullptr);
// srand(time(0));
#ifdef ACM_LOCAL
freopen("input", "r", stdin);
freopen("output", "w", stdout);
#endif
init();
int o = 1;
// cin >> o;
while(o --) {
while(cin >> n && n) {
solve();
}
}
return 0;
}