Nearest Common Ancestors(LCA板子)

题目链接:http://poj.org/problem?id=1330

Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 36918   Accepted: 18495

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below: 

Nearest Common Ancestors(LCA板子) 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is. 

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y. 

Write a program that finds the nearest common ancestor of two distinct nodes in a tree. 

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

Source

Taejon 2002   题目大意:输入T  T组样例  输入N  N个结点(1-N) 下面N-1行  每行两个数 u v  表示u是v的父亲  第N行表示询问 两个数的最近公共祖先 思路:不多说,完全板子 看代码:
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
const int maxn=1e4+50;
int N;//节点个数
vector<int>v[maxn];//树
vector<int> query[maxn];
int indeg[maxn];//节点的入度
int fa[maxn],deep[maxn],ancestor[maxn];//父亲 深度 祖先
bool vis[maxn];//是否被检查过
int root;
void Init()
{
    for(int i=1;i<=N;i++)
    {
        v[i].clear();
        query[i].clear();
        indeg[i]=0;


    }
    return ;
}
void add_edge(int x,int y)
{
    v[x].push_back(y);
    indeg[y]++;
    return ;
}
void Input_query()
{
    int u,v;
    scanf("%d%d",&u,&v);
    query[u].push_back(v);//注意 两个都要存
    query[v].push_back(u);
    return ;
}
void Init_set()
{
    for(int i=1;i<=N;i++)
    {
        fa[i]=i;
        ancestor[i]=i;
        deep[i]=0;
    }
    return ;
}
int Find(int x)
{
    return fa[x]==x?x:fa[x]=Find(fa[x]);
}
void Union(int u,int v)
{
    int du=Find(u);
    int dv=Find(v);
    if(du>dv)
    {
        fa[dv]=du;
        return ;
    }
    else
    {
        fa[du]=dv;
        if(deep[du]==deep[dv]) deep[dv]++;
    }
    return ;
}
void Tarjan(int p)
{
    for(int i=0;i<v[p].size();i++)//遍历子树
    {
        Tarjan(v[p][i]);
        Union(p,v[p][i]);
        ancestor[Find(p)]=p;
    }
    vis[p]=true;
    for(int i=0;i<query[p].size();i++)
    {
        if(vis[query[p][i]])
        {
            printf("%d\n",ancestor[Find(query[p][i])]);
        }
    }
    return ;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {

        scanf("%d",&N);
        Init();
        for(int i=1;i<N;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            add_edge(u,v);
        }
        for(int i=1;i<=N;i++)
        {
            if(indeg[i]==0)
            {
                root=i;
                break;
            }
        }
        Input_query();
        Init_set();
        memset(vis,false,sizeof(vis));
        Tarjan(root);
    }
    return 0;
}

 

上一篇:Javascript 對象原型(prototype)


下一篇:发布订阅模式