要深入理解 V8 的工作原理,需要搞清楚一些概念和原理。编译器(Compiler)、解释器(Interpreter)、抽象语法树(AST)、字节码(Bytecode)、即时编译器(JIT)等概念,都是需要重点关注的。
编译器和解释器
按语言的执行流程,可以把语言划分为编译型语言和解释型语言。编译型语言在程序执行之前,需要经过编译器的编译过程,并且编译之后会直接保留机器能读懂的二进制文件,这样每次运行程序时,都可以直接运行该二进制文件,而不需要再次重新编译了。比如 C/C++、GO 等都是编译型语言。而由解释型语言编写的程序,在每次运行时都需要通过解释器对程序进行动态解释和执行。比如 Python、JavaScript 等都属于解释型语言。
编译型语言:在编译型语言的编译过程中,编译器首先会依次对源代码进行词法分析、语法分析,生成抽象语法树(AST),然后是优化代码,最后再生成处理器能够理解的机器码。如果编译成功,将会生成一个可执行的文件。但如果编译过程发生了语法或者其他的错误,那么编译器就会抛出异常,最后的二进制文件也不会生成成功。
解释型语言:在解释型语言的解释过程中,同样解释器也会对源代码进行词法分析、语法分析,并生成抽象语法树(AST),不过它会再基于抽象语法树生成字节码,最后再根据字节码来执行程序、输出结果。
V8 在执行过程中既有解释器,又有编译器。
-
生成抽象语法树(AST)和执行上下文
将源代码转换为抽象语法树,并生成执行上下文。生成一个 AST的过程和渲染引擎将 HTML 格式文件转换为计算机可以理解的 DOM 树的情况类似。可以把 AST 看成代码的结构化表示,编译器或者解释器后续的工作都需要依赖于 AST,而不是源代码。AST 是非常重要的一种数据结构,在很多项目中有着广泛的应用。其中最著名的一个项目是 Babel。Babel 的工作原理就是先将 ES6 源码转换为 AST,然后再将 ES6 语法的 AST 转换为 ES5 语法的 AST,最后利用 ES5 的 AST 生成 JavaScript 源代码。除了 Babel 外,还有 ESLint 也使用 AST。ESLint 是一个用来检查JavaScript 编写规范的插件,其检测流程也是需要将源码转换为 AST,然后再利用 AST 来检查代码规范化的问题。
生成 AST 需要经过两个阶段。第一阶段是分词,又称为词法分析,其作用是将一行行的源码拆解成一个个 token。所谓 token,指的是语法上不可再分的、最小的单个字符或字符串。第二阶段是解析,又称为语法 分析,其作用是将上一步生成的 token 数据,根据语法规则转为 AST。如果源码符合语法规则,这一步就会顺利完成。但如果源码存在语法错误,这一步就会终止,并抛出一个“语法错误”。
这就是 AST 的生成过程,先分词,再解析。 -
生成字节码
解释器登场了,它会根据 AST 生成字节码,并解释执行字节码。其实一开始 V8 并没有字节码,而是直接将 AST 转换为机器码,由于执行机器码的效率是非常高效的,所以这种方式在发布后的一段时间内运行效果是非常好的。但是随着 Chrome 在手机上的广泛普及,特别是运行在 512M 内存的手机上,内存占用问题也暴露出来了,因为 V8 需要消耗大量的内存来存放转换后的机器码。为了解决内存占用问题,V8 团队大幅重构了引擎架构,引入字节码,并且抛弃了之前的编译器。
字节码就是介于 AST 和机器码之间的一种代码。但是与特定类型的机器码无关,字节码需要通过解释器将其转换为机器码后才能执行。机器码所占用空间远远超过字节码,所以使用字节码可以减少系统的内存使用。 -
执行代码
解释器 除了负责生成字节码之外,它还有另外一个作用,就是解释执行字节码。在 解释器执行字节码的过程中,如果发现有热点代码,比如一段代码被重复执行多次,这种就称为热点代码,那么后台的编译器 就会把该段热点的字节码编译为高效的机器码,然后当再次执行这段被优化的代码时,只需要执行编译后的机器码就可以了,这样就大大提升了代码的执行效率。
我们把字节码配合解释器和编译器这种技术称为即时编译
JavaScript 的性能优化
对于优化 JavaScript 执行效率,应该将优化的中心聚焦在单次脚本的执行时间和脚本的网络下载上,主要关注以下三点内容:
- 提升单次脚本的执行速度,避免 JavaScript 的长任务霸占主线程,这样可以使得页面快速响应交互;
- 避免大的内联脚本,因为在解析 HTML 的过程中,解析和编译也会占用主线程;
- 减少 JavaScript 文件的容量,因为更小的文件会提升下载速度,并且占用更低的内存。