Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
Yes
2469135798
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define maxnum 100005 int a[] = {};
int count1[] = {}; //分别对倍乘前后的位计数
int count2[] = {}; int main(){
string s;
cin >> s;
int len = s.size();
for(int i=;i < s.size();i++){
a[i] = s[i]-'';
}
for(int i=;i < len;i++){
count1[a[i]]++;
}
for(int i=;i < len/;i++){ //翻转
swap(a[i],a[len-i-]);
} int jinwei = ; //倍乘
for(int i=;i <= len;i++){
int num = a[i]* + jinwei;
a[i] = num%;
jinwei = (num)/;
} // for(auto num:a) cout << num << " "; int pos = ;
for(int i=;i >= ;i--){
if(a[i]){pos = i;break;}
}
for(int i=;i <= pos;i++){
count2[a[i]]++;
} int flag = ;
for(int i=;i < ;i++){
if(count1[i] != count2[i])flag = ;
}
if(flag) cout << "Yes" << endl;
else cout << "No" << endl; for(int i=pos;i >= ;i--){
cout << a[i];
} return ;
}
_