Exercise: Implement deep networks for digit classification
习题链接:Exercise: Implement deep networks for digit classification
stackedAEPredict.m
function [pred] = stackedAEPredict(theta, inputSize, hiddenSize, numClasses, netconfig, data) % stackedAEPredict: Takes a trained theta and a test data set,
% and returns the predicted labels for each example. % theta: trained weights from the autoencoder
% visibleSize: the number of input units
% hiddenSize: the number of hidden units *at the 2nd layer*
% numClasses: the number of categories
% data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % Your code should produce the prediction matrix
% pred, where pred(i) is argmax_c P(y(c) | x(i)). %% Unroll theta parameter % We first extract the part which compute the softmax gradient
softmaxTheta = reshape(theta(:hiddenSize*numClasses), numClasses, hiddenSize); % Extract out the "stack"
stack = params2stack(theta(hiddenSize*numClasses+:end), netconfig); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute pred using theta assuming that the labels start
% from . numCases = size(data, ); % forward
z2 = stack{}.w * data + repmat(stack{}.b, , numCases);
a2 = sigmoid(z2);
z3 = stack{}.w * a2 + repmat(stack{}.b, , numCases);
a3 = sigmoid(z3);
[~, pred] = max(softmaxTheta * a3); % ----------------------------------------------------------- end % You might find this useful
function sigm = sigmoid(x)
sigm = ./ ( + exp(-x));
end
stackedAECost.m
function [ cost, grad ] = stackedAECost(theta, inputSize, hiddenSize, ...
numClasses, netconfig, ...
lambda, data, labels) % stackedAECost: Takes a trained softmaxTheta and a training data set with labels,
% and returns cost and gradient using a stacked autoencoder model. Used for
% finetuning. % theta: trained weights from the autoencoder
% visibleSize: the number of input units
% hiddenSize: the number of hidden units *at the 2nd layer*
% numClasses: the number of categories
% netconfig: the network configuration of the stack
% lambda: the weight regularization penalty
% data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example.
% labels: A vector containing labels, where labels(i) is the label for the
% i-th training example %% Unroll softmaxTheta parameter % We first extract the part which compute the softmax gradient
softmaxTheta = reshape(theta(:hiddenSize*numClasses), numClasses, hiddenSize); % Extract out the "stack"
stack = params2stack(theta(hiddenSize*numClasses+:end), netconfig); % You will need to compute the following gradients
softmaxThetaGrad = zeros(size(softmaxTheta));
stackgrad = cell(size(stack));
for d = :numel(stack)
stackgrad{d}.w = zeros(size(stack{d}.w));
stackgrad{d}.b = zeros(size(stack{d}.b));
end cost = ; % You need to compute this % You might find these variables useful
numCases = size(data, );
groundTruth = full(sparse(labels, :numCases, )); %% --------------------------- YOUR CODE HERE -----------------------------
% Instructions: Compute the cost function and gradient vector for
% the stacked autoencoder.
%
% You are given a stack variable which is a cell-array of
% the weights and biases for every layer. In particular, you
% can refer to the weights of Layer d, using stack{d}.w and
% the biases using stack{d}.b . To get the total number of
% layers, you can use numel(stack).
%
% The last layer of the network is connected to the softmax
% classification layer, softmaxTheta.
%
% You should compute the gradients for the softmaxTheta,
% storing that in softmaxThetaGrad. Similarly, you should
% compute the gradients for each layer in the stack, storing
% the gradients in stackgrad{d}.w and stackgrad{d}.b
% Note that the size of the matrices in stackgrad should
% match exactly that of the size of the matrices in stack.
% z2 = stack{}.w * data + repmat(stack{}.b, , numCases);
a2 = sigmoid(z2);
z3 = stack{}.w * a2 + repmat(stack{}.b, , numCases);
a3 = sigmoid(z3);
M = softmaxTheta * a3;
M = bsxfun(@minus, M, max(M, [], ));
M = exp(M);
M = bsxfun(@rdivide, M, sum(M));
diff = groundTruth - M; cost = -(/numCases) * sum(sum(groundTruth .* log(M))) + (lambda/) * sum(sum(softmaxTheta .* softmaxTheta)); for i=:numClasses
softmaxThetaGrad(i, :) = -(/numCases) * (sum(a3 .* repmat(diff(i, :), hiddenSize, ), ))' + lambda * softmaxTheta(i, :);
end delta3 = - (softmaxTheta' * diff) .* sigmoiddiff(z3);
stackgrad{}.w = delta3 * (a2)' ./ numCases;
stackgrad{}.b = sum(delta3, )./ numCases;
delta2 = (stack{}.w' * delta3) .* sigmoiddiff(z2);
stackgrad{}.w = delta2 * data'./ numCases;
stackgrad{}.b = sum(delta2, )./ numCases; % ------------------------------------------------------------------------- %% Roll gradient vector
grad = [softmaxThetaGrad(:) ; stack2params(stackgrad)]; end % You might find this useful
function sigm = sigmoid(x)
sigm = ./ ( + exp(-x));
end function sigmdiff = sigmoiddiff(x)
sigmdiff = sigmoid(x) .* ( - sigmoid(x));
end
stackedAEExercise.m
%% CS294A/CS294W Stacked Autoencoder Exercise % Instructions
% ------------
%
% This file contains code that helps you get started on the
% sstacked autoencoder exercise. You will need to complete code in
% stackedAECost.m
% You will also need to have implemented sparseAutoencoderCost.m and
% softmaxCost.m from previous exercises. You will need the initializeParameters.m
% loadMNISTImages.m, and loadMNISTLabels.m files from previous exercises.
%
% For the purpose of completing the assignment, you do not need to
% change the code in this file.
%
%%======================================================================
%% STEP : Here we provide the relevant parameters values that will
% allow your sparse autoencoder to get good filters; you do not need to
% change the parameters below. inputSize = * ;
numClasses = ;
hiddenSizeL1 = ; % Layer Hidden Size
hiddenSizeL2 = ; % Layer Hidden Size
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-; % weight decay parameter
beta = ; % weight of sparsity penalty term %%======================================================================
%% STEP : Load data from the MNIST database
%
% This loads our training data from the MNIST database files. % Load MNIST database files
trainData = loadMNISTImages('mnist/train-images-idx3-ubyte');
trainLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte'); trainLabels(trainLabels == ) = ; % Remap to since our labels need to start from %%======================================================================
%% STEP : Train the first sparse autoencoder
% This trains the first sparse autoencoder on the unlabelled STL training
% images.
% If you've correctly implemented sparseAutoencoderCost.m, you don't need
% to change anything here. % Randomly initialize the parameters
sae1Theta = initializeParameters(hiddenSizeL1, inputSize); %% ---------------------- YOUR CODE HERE ---------------------------------
% Instructions: Train the first layer sparse autoencoder, this layer has
% an hidden size of "hiddenSizeL1"
% You should store the optimal parameters in sae1OptTheta addpath minFunc/
options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% sparseAutoencoderCost.m satisfies this.
options.maxIter = ; % Maximum number of iterations of L-BFGS to run
options.display = 'on'; [sae1OptTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
inputSize, hiddenSizeL1, ...
lambda, sparsityParam, ...
beta, trainData), ...
sae1Theta, options); % ------------------------------------------------------------------------- %%======================================================================
%% STEP : Train the second sparse autoencoder
% This trains the second sparse autoencoder on the first autoencoder
% featurse.
% If you've correctly implemented sparseAutoencoderCost.m, you don't need
% to change anything here. [sae1Features] = feedForwardAutoencoder(sae1OptTheta, hiddenSizeL1, ...
inputSize, trainData); % Randomly initialize the parameters
sae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1); %% ---------------------- YOUR CODE HERE ---------------------------------
% Instructions: Train the second layer sparse autoencoder, this layer has
% an hidden size of "hiddenSizeL2" and an inputsize of
% "hiddenSizeL1"
%
% You should store the optimal parameters in sae2OptTheta options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% sparseAutoencoderCost.m satisfies this.
options.maxIter = ; % Maximum number of iterations of L-BFGS to run
options.display = 'on'; [sae2OptTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
hiddenSizeL1, hiddenSizeL2, ...
lambda, sparsityParam, ...
beta, sae1Features), ...
sae2Theta, options); % ------------------------------------------------------------------------- %%======================================================================
%% STEP : Train the softmax classifier
% This trains the sparse autoencoder on the second autoencoder features.
% If you've correctly implemented softmaxCost.m, you don't need
% to change anything here. [sae2Features] = feedForwardAutoencoder(sae2OptTheta, hiddenSizeL2, ...
hiddenSizeL1, sae1Features); % Randomly initialize the parameters
saeSoftmaxTheta = 0.005 * randn(hiddenSizeL2 * numClasses, ); %% ---------------------- YOUR CODE HERE ---------------------------------
% Instructions: Train the softmax classifier, the classifier takes in
% input of dimension "hiddenSizeL2" corresponding to the
% hidden layer size of the 2nd layer.
%
% You should store the optimal parameters in saeSoftmaxOptTheta
%
% NOTE: If you used softmaxTrain to complete this part of the exercise,
% set saeSoftmaxOptTheta = softmaxModel.optTheta(:); options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% softmaxCost.m satisfies this.
minFuncOptions.display = 'on'; [saeSoftmaxOptTheta, cost] = minFunc( @(p) softmaxCost(p, ...
numClasses, hiddenSizeL2, lambda, ...
sae2Features, trainLabels), ...
saeSoftmaxTheta, options); % ------------------------------------------------------------------------- %%======================================================================
%% STEP : Finetune softmax model % Implement the stackedAECost to give the combined cost of the whole model
% then run this cell. % Initialize the stack using the parameters learned
stack = cell(,);
stack{}.w = reshape(sae1OptTheta(:hiddenSizeL1*inputSize), ...
hiddenSizeL1, inputSize);
stack{}.b = sae1OptTheta(*hiddenSizeL1*inputSize+:*hiddenSizeL1*inputSize+hiddenSizeL1);
stack{}.w = reshape(sae2OptTheta(:hiddenSizeL2*hiddenSizeL1), ...
hiddenSizeL2, hiddenSizeL1);
stack{}.b = sae2OptTheta(*hiddenSizeL2*hiddenSizeL1+:*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2); % Initialize the parameters for the deep model
[stackparams, netconfig] = stack2params(stack);
stackedAETheta = [ saeSoftmaxOptTheta ; stackparams ]; %% ---------------------- YOUR CODE HERE ---------------------------------
% Instructions: Train the deep network, hidden size here refers to the '
% dimension of the input to the classifier, which corresponds
% to "hiddenSizeL2".
%
% options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% softmaxCost.m satisfies this.
minFuncOptions.display = 'on'; [stackedAEOptTheta, cost] = minFunc( @(p) stackedAECost(p, ...
inputSize, hiddenSizeL2, numClasses, ...
netconfig, lambda, trainData, trainLabels), ...
stackedAETheta, options); % ------------------------------------------------------------------------- %%======================================================================
%% STEP : Test
% Instructions: You will need to complete the code in stackedAEPredict.m
% before running this part of the code
% % Get labelled test images
% Note that we apply the same kind of preprocessing as the training set
testData = loadMNISTImages('mnist/t10k-images-idx3-ubyte');
testLabels = loadMNISTLabels('mnist/t10k-labels-idx1-ubyte'); testLabels(testLabels == ) = ; % Remap to [pred] = stackedAEPredict(stackedAETheta, inputSize, hiddenSizeL2, ...
numClasses, netconfig, testData); acc = mean(testLabels(:) == pred(:));
fprintf('Before Finetuning Test Accuracy: %0.3f%%\n', acc * ); [pred] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ...
numClasses, netconfig, testData); acc = mean(testLabels(:) == pred(:));
fprintf('After Finetuning Test Accuracy: %0.3f%%\n', acc * ); % Accuracy is the proportion of correctly classified images
% The results for our implementation were:
%
% Before Finetuning Test Accuracy: 87.7%
% After Finetuning Test Accuracy: 97.6%
%
% If your values are too low (accuracy less than %), you should check
% your code for errors, and make sure you are training on the
% entire data set of 28x28 training images
% (unless you modified the loading code, this should be the case)
Before Finetuning Test Accuracy: 87.740%
After Finetuning Test Accuracy: 97.610%