文章目录
1. 原理
这个问题的算法思路挺简单的。分成两步来判断:
- 判断线段的两个端点是否在矩形内,如果两个端点至少有一个在矩形内,说明线段与矩形相交。
- 如果两个端点都不在矩形内,那么需要再判断线段是否与矩形的对角线是否相交。因为两个端点都不在矩形内的线段有可能会切割矩形的角,这时会与矩形的对角线相交。
那么关键就在于两个子算法:判断点在矩形内和判断线段相交。判断点在矩形内非常简单,就是比较点是否在矩形的四至范围就可以了;而判断线段相交可以参考《空间或平面判断两线段相交(求交点)》这篇文章。
2. 实现
关键的C++实现代码如下:
//空间直线
template <class T>
class LineSegment
{
public:
Vec3<T> startPoint;
Vec3<T> endPoint;
Vec3<T> direction;
Vec3<T> min;
Vec3<T> max;
LineSegment()
{
}
LineSegment(Vec3<T> start, Vec3<T> end)
{
startPoint = start;
endPoint = end;
direction = end - start;
}
inline void Set(Vec3<T> start, Vec3<T> end)
{
startPoint = start;
endPoint = end;
direction = end - start;
}
//两条线段相交
inline static bool Intersection2D(LineSegment & line1, LineSegment & line2, Vec3<T>& insPoint)
{
double D = -line1.direction.x() * line2.direction.y() + line1.direction.y() * line2.direction.x();
if(D == 0.0)
{
return false;
}
auto O12 = line2.startPoint - line1.startPoint;
T D1 = -O12.x() * line2.direction.y() + O12.y() * line2.direction.x();
T D2 = line1.direction.x() * O12.y() - line1.direction.y() * O12.x();
T t1 = D1 / D;
if(t1<0 || t1 > 1)
{
return false;
}
T t2 = D2 / D;
if(t2<0 || t2 > 1)
{
return false;
}
insPoint = line1.startPoint + line1.direction * t1; //这样计算得到的Z值是不准确的
return true;
}
//线段与矩形相交
inline bool static IsIntersectsOrthogon2D(LineSegment & line, Orthogon<T> orthogon)
{
if (orthogon.IsContainsPoint(line.startPoint.x(), line.startPoint.y()) ||
orthogon.IsContainsPoint(line.endPoint.x(), line.endPoint.y()))
{
return true;
}
LineSegment diagonal1(Vec3<T>(orthogon.minX(), orthogon.minY(), 0),
Vec3<T>(orthogon.maxX(), orthogon.maxY(), 0));
LineSegment diagonal2(Vec3<T>(orthogon.minX(), orthogon.maxY(), 0),
Vec3<T>(orthogon.maxX(), orthogon.minY(), 0));
Vec3<T> point(0,0,0);
return Intersection2D(line, diagonal1, point) || Intersection2D(line, diagonal2, point);
}
};