bzoj2668

对于这种题很容易看出是费用流吧……

但这道题不容易建模;

首先是怎么表示目标状态和其实状态,看起来有黑有白很复杂

但实际上,不难发现,白色格子没什么用,起决定作用的是黑格子

也就是我们可以把问题简化:我们怎么把开始的黑格子移到目标位置

但这个移动不是一般的移动;

在一条路径中,不难发现,起始两点是只要交换一次,其他路径上个点都是要交换2次

由于题目给出的限制是点的交换次数限制c,所以不难想到要拆点

但是平常的拆两点好像无法表示这个特征,

于是我们就拆成3个点……

p1--->p0--->p2

p1表示交换进来,p2表示交换出去;

所以不难得出:

对于每个点,如果它是原图中的黑点,连边<p1,p0,c/2,0>,<p0,p2,(c+1)/2,0>,<s,p0,1,0>;

如果它是新图中的黑点,连边<p1,p0,(c+1)/2>,<p0,p2,c/2,0>,<p0,t,1,0>;

注意存在有的点在新图原图都是黑点的情况(在这里WA了一次)

如果它在两个图中都是白点,那么连边<p1,p0,c/2,0>,<p0,p2,c/2,0>

最后对于原图中任意可达两点,连边<pi2,pj1,inf,1>

注意这道题可以交换对角线,还要判断是否可行,细节挺多

 const dx:array[..] of integer=(-,,,,,-,-,);
      dy:array[..] of integer=(,,,-,,-,,-);
      inf=;
type node=record
       next,point,cost,flow:longint;
     end; var edge:array[..] of node;
    p,pre,cur,d:array[..] of longint;
    v:array[..] of boolean;
    a,b,c:array[..,..] of integer;
    q:array[..] of longint;
    ch,t,n,m,i,j,k,x,y,po,tot,sum,ans,len:longint;
    s:string; procedure add(x,y,f,w:longint);
  begin
    inc(len);
    edge[len].point:=y;
    edge[len].flow:=f;
    edge[len].cost:=w;
    edge[len].next:=p[x];
    p[x]:=len;
  end; function spfa:boolean;
  var i,x,y,f,r:longint;
  begin
    fillchar(v,sizeof(v),false);
    v[]:=true;
    for i:= to t do
      d[i]:=inf;
    d[]:=;
    f:=;
    r:=;
    q[f]:=;
    while f<=r do
    begin
      x:=q[f];
      v[x]:=false;
      i:=p[x];
      while i<>- do
      begin
        y:=edge[i].point;
        if edge[i].flow> then
          if d[y]>d[x]+edge[i].cost then
          begin
            d[y]:=d[x]+edge[i].cost;
            pre[y]:=x;
            cur[y]:=i;
            if not v[y] then
            begin
              inc(r);
              q[r]:=y;
              v[y]:=true;
            end;
          end;
        i:=edge[i].next;
      end;
      inc(f);
    end;
    if d[t]=inf then exit(false) else exit(true);
  end; procedure mincost;
  var i,j,neck:longint;
  begin
    while spfa do
    begin
      i:=t;
      neck:=inf;
      while i<> do
      begin
        j:=cur[i];
        if neck>edge[j].flow then neck:=edge[j].flow;
        i:=pre[i];
      end;
      i:=t;
      while i<> do
      begin
        j:=cur[i];
        dec(edge[j].flow,neck);
        inc(edge[j xor ].flow,neck);
        i:=pre[i];
      end;
      ans:=ans+d[t]*neck;
      dec(ch,neck);
      if ch= then break;
    end;
  end; begin
  readln(n,m);
  len:=-;
  fillchar(p,sizeof(p),);
  t:=*n*m+;
  for i:= to n do
  begin
    readln(s);
    for j:= to m do
    begin
      a[i,j]:=ord(s[j])-;
      tot:=tot+a[i,j];
    end;
  end;
  for i:= to n do
  begin
    readln(s);
    for j:= to m do
    begin
      b[i,j]:=ord(s[j])-;
      sum:=sum+b[i,j];
    end;
  end;
  for i:= to n do
  begin
    readln(s);
    for j:= to m do
      c[i,j]:=ord(s[j])-;
  end;
  if sum<>tot then
  begin
    writeln(-);
    halt;
  end
  else ch:=sum;
  sum:=n*m;
  for i:= to n do
  begin
    for j:= to m do
    begin
      x:=(i-)*m+j;
      if a[i,j]= then
      begin
        add(x+sum,x,c[i,j] shr ,);
        add(x,x+sum,,);
        add(x,x+*sum,(c[i,j]+) shr ,);
        add(x+*sum,x,,);
        add(,x,,);
        add(x,,,);
        if b[i,j]= then    //细节
        begin
          add(x,t,,);
          add(t,x,,);
        end;
      end
      else if b[i,j]= then
      begin
        add(x+sum,x,(c[i,j]+) shr ,);
        add(x,x+sum,,);
        add(x,x+*sum,c[i,j] shr ,);
        add(x+*sum,x,,);
        add(x,t,,);
        add(t,x,,);
      end
      else if (a[i,j]+b[i,j]=) then
      begin
        add(x+sum,x,c[i,j] shr ,);
        add(x,x+sum,,);
        add(x,x+*sum,c[i,j] shr ,);
        add(x+*sum,x,,);
      end;
    end;
  end;   for i:= to n do
    for j:= to m do
    begin
      po:=(i-)*m+j;
      for k:= to do
      begin
        x:=i+dx[k];
        y:=j+dy[k];
        if (x<=n) and (y<=m) and (x>) and (y>) then
        begin
          tot:=(x-)*m+y;
          add(po+*sum,tot+sum,inf,);
          add(tot+sum,po+*sum,,-);
        end;
      end;
    end;
  mincost;
  if ch<> then writeln(-) else writeln(ans);
end.
上一篇:IOC注解开发与XML整合


下一篇:js jquery 判断函数是否存在($.isFunction函数的使用)