iOS模型以及使用

个人习惯,也可以不这样写

创建模型基类:

#import <Foundation/Foundation.h>

@interface WJBaseModel : NSObject

//将字典内的值赋给申明的相应属性
- (instancetype)initWithDict:(NSDictionary *)dict;
+ (instancetype)modelWithDict:(NSDictionary *)dict; @end
#import "WJBaseModel.h"

@implementation WJBaseModel

- (instancetype)initWithDict:(NSDictionary *)dict {
self = [super init];
if (self) { }
return self;
} + (instancetype)modelWithDict:(NSDictionary *)dict {
return [[self alloc]initWithDict:dict];
} @end

创建模型:

#import <Foundation/Foundation.h>
#import "WJBaseModel.h"
@interface AddressModel : WJBaseModel @property (nonatomic,copy)NSString *name;//名称
@property (nonatomic,copy)NSString *address;//地址
@property (nonatomic,copy)NSString *phoneNumber;//电话号码
@property (nonatomic,copy)NSString *defaultAddress;//默认地址 @property (nonatomic,copy)NSString *addressDetail;//详细地址
@property (nonatomic,copy)NSString *num;//邮编 @end
#import "AddressModel.h"

@implementation AddressModel

- (instancetype)initWithDict:(NSDictionary *)dict {
self = [super initWithDict:dict];
if (self) {
self.name = dict[@"name"];
self.address = dict[@"address"];
self.phoneNumber = dict[@"phoneNumber"];
self.defaultAddress = dict[@"defaultAddress"];
self.addressDetail = dict[@"addressDetail"];
self.num = dict[@"num"];
}
return self;
} @end

注意:上面字典的键要和传入字典的键相同

使用:

1.添加数据:(假数据)

  [self initDataSource:@[@{@"name":@"黄智擒",
@"phoneNumber":@"",
@"address":@"时代荆轲名媛 17-1102",
@"defaultAddress":@"",
@"addressDetail":@"addressDetail",
@"num":@""},
@{@"name":@"黄智擒",
@"phoneNumber":@"",
@"address":@"时代荆轲名媛 17-1102",
@"defaultAddress":@"",
@"addressDetail":@"addressDetail",
@"num":@""},
@{@"name":@"黄智擒",
@"phoneNumber":@"",
@"address":@"时代荆轲名媛 17-1102",
@"defaultAddress":@"",
@"addressDetail":@"addressDetail",
@"num":@""},
@{@"name":@"黄智擒",
@"phoneNumber":@"",
@"address":@"时代荆轲名媛 17-1102",
@"defaultAddress":@"",
@"addressDetail":@"addressDetail",
@"num":@""},
@{@"name":@"黄智擒",
@"phoneNumber":@"",
@"address":@"时代荆轲名媛 17-1102",
@"defaultAddress":@"",
@"addressDetail":@"addressDetail",
@"num":@""},
@{@"name":@"黄智擒",
@"phoneNumber":@"",
@"address":@"时代荆轲名媛 17-1102",
@"defaultAddress":@"",
@"addressDetail":@"addressDetail",
@"num":@""}]];

2.将模型添加到可变数组上(只有一个模型的话就用字典算了)

#pragma mark - 模型数据

- (void)initDataSource:(NSArray *)dicArray {

    _dataSource = [[NSMutableArray alloc]init];for (NSDictionary *dic in dicArray) {

        AddressModel *model = [AddressModel modelWithDict:dic];

        [_dataSource addObject:model];

    }
}

3.在UITableView中使用(补充使用)

cell中申明模型属性

@property (nonatomic,strong)AddressModel  *model;

重写set方法,添加模型数据到相应的控件上显示

-(void)setModel:(AddressModel *)model{
_model = model;
_nameAndNum.text = [NSString stringWithFormat:@"%@ %@",model.name,model.phoneNumber];
_address.text = [NSString stringWithFormat:@"%@ %@",model.address,model.addressDetail];
}

效果图:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUQAAABqCAYAAADEOyg0AAAKomlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU2kWx7/30hstEAEpoXekV+k1dOlgIyQQQokhEBREVERUYEQREQFF0BEQBUelyFgQUSwMAvY6IIOCMg4WQEVlH7CE3T07Z8/enHve7/zfffe773vfPecGAPINJp+fCEsAkMRLFQR6ONPDIyLpuN8BBlCRnxpQZ7JS+E4BAT7gb23yAYBmr3cNZnP9fdx/NUl2TAoLACgA4Wh2CisJ4XOIn2bxBakAoNiIrrY+lT/LOxGWFiAFIlwxy5x5Pj3L0fPcORcTHOiC8CMA8GQmU8ABgPQHotPTWBwkDxmNsBGPzeUhbIawPSuOiaxDRu4B/aSkdbN8BGHt6H/Jw/m3nNGinEwmR8Tz7zJneFduCj+Rmf5/bsf/tqRE4cIaqoiT4wSegbPrIXtWm7DOW8S8aD//Beay52ua5TihZ8gCs1JcIheYzXT1XmBhQojTAjMFi89yUxnBCyxYFyjKH5PiFiTKH8PwEdWQ6CfiWK47Y4Ez4oLDFjiNG+q3wCkJQd6LMS4iXSAMFNUcK3AXvWNSymJtLOZiDalxwZ6LtYWLamDHuLqJdF6IKJ6f6izKyU8MEMXHJHqI9JS0INGzqcgBW+B4plfAYp4A0f4ALvAFTMBKjdkwe66Ayzp+uoDLiUulOyFdEkNn8FiG+nQTI2NzAGZ7bv6TfqTN9RJEu7WoJbcDYJ2HiJxFjakGwPlXAFAnFzW1D8hx2APAxV6WUJA2r80edaSXiUAcSAM5oIR0tDYwACbAAtgCR+AGvIA/CAYRYA1ggTiQBARgPcgEW0EuyAd7wH5QBirBUVALToEzoAVcAFfAdXAb9IL74CkYAMPgLRgHk2AagiAcRIGokBykDGlAepAJZAXZQ26QDxQIRUBREAfiQUIoE9oG5UNFUBlUBdVBv0DnoSvQTagPegwNQqPQB+grjILJsDSsCGvCy2Ar2An2hoPh1TAHToYz4Bx4N1wKV8Mn4Wb4Cnwbvg8PwG/hCRRAkVA0lArKAGWFckH5oyJRsSgBKguVhypBVaMaUG2oLtRd1ABqDPUFjUVT0XS0AdoW7YkOQbPQyegsdAG6DF2LbkZ3ou+iB9Hj6B8YCkYBo4exwTAw4RgOZj0mF1OCOY5pwlzD3McMYyaxWCwNq4W1xHpiI7Dx2I3YAuwhbCO2HduHHcJO4HA4OZwezg7nj2PiUnG5uIO4k7jLuH7cMO4znoRXxpvg3fGReB4+G1+CP4G/hO/Hv8ZPEyQIGgQbgj+BTUgnFBKOEdoIdwjDhGmiJFGLaEcMJsYTtxJLiQ3Ea8RnxI8kEkmVZE1aQeKStpBKSadJN0iDpC9kKbIu2YW8iiwk7ybXkNvJj8kfKRSKJsWREklJpeym1FGuUl5QPotRxQzFGGJssc1i5WLNYv1i78QJ4hriTuJrxDPES8TPit8RH5MgSGhKuEgwJbIkyiXOSzyUmJCkShpL+ksmSRZInpC8KTkihZPSlHKTYkvlSB2Vuio1REVR1aguVBZ1G/UY9Rp1WBorrSXNkI6Xzpc+Jd0jPS4jJWMmEyqzQaZc5qLMAA1F06QxaIm0QtoZ2gPa1yWKS5yWxCzZtaRhSf+SKdmlso6yMbJ5so2y92W/ytHl3OQS5PbKtcg9l0fL68qvkF8vf1j+mvzYUumltktZS/OWnln6RAFW0FUIVNiocFShW2FCUUnRQ5GveFDxquKYEk3JUSleqVjpktKoMlXZXpmrXKx8WfkNXYbuRE+kl9I76eMqCiqeKkKVKpUelWlVLdUQ1WzVRtXnakQ1K7VYtWK1DrVxdWV1X/VM9Xr1JxoEDSuNOI0DGl0aU5pammGaOzRbNEe0ZLUYWhla9VrPtCnaDtrJ2tXa93SwOlY6CTqHdHp1YV1z3Tjdct07erCehR5X75Benz5G31qfp1+t/9CAbOBkkGZQbzBoSDP0Mcw2bDF8t0x9WeSyvcu6lv0wMjdKNDpm9NRYytjLONu4zfiDia4Jy6Tc5J4pxdTddLNpq+l7Mz2zGLPDZo/Mqea+5jvMO8y/W1haCCwaLEYt1S2jLCssH1pJWwVYFVjdsMZYO1tvtr5g/cXGwibV5ozNX7YGtgm2J2xHlmstj1l+bPmQnaod067KbsCebh9lf8R+wEHFgelQ7fDSUc2R7Xjc8bWTjlO800mnd85GzgLnJucpFxuXTS7trihXD9c81x43KbcQtzK3F+6q7hz3evdxD3OPjR7tnhhPb8+9ng8ZigwWo44x7mXptcmr05vsHeRd5v3SR9dH4NPmC/t6+e7zfean4cfza/EH/gz/ff7PA7QCkgN+XYFdEbCifMWrQOPAzMCuIGrQ2qATQZPBzsGFwU9DtEOEIR2h4qGrQutCp8Jcw4rCBsKXhW8Kvx0hH8GNaI3ERYZGHo+cWOm2cv/K4VXmq3JXPVittXrD6ptr5Nckrrm4Vnwtc+3ZKExUWNSJqG9Mf2Y1cyKaEV0RPc5yYR1gvWU7sovZozF2MUUxr2PtYotiRzh2nH2c0TiHuJK4Ma4Lt4z7Pt4zvjJ+KsE/oSZhJjEssTEJnxSVdJ4nxUvgda5TWrdhXR9fj5/LH0i2Sd6fPC7wFhxPgVJWp7SmSiPDTbdQW7hdOJhmn1ae9nl96PqzGyQ38DZ0p+um70p/neGe8fNG9EbWxo5MlcytmYObnDZVZUFZ0Vkdm9U252we3uKxpXYrcWvC1t+yjbKLsj9tC9vWlqOYsyVnaLvH9vpcsVxB7sMdtjsqd6J3cnf27DLddXDXjzx23q18o/yS/G8FrIJbPxn/VPrTzO7Y3T2FFoWH92D38PY82Ouwt7ZIsiijaGif777mYnpxXvGn/Wv33ywxK6k8QDwgPDBQ6lPaelD94J6D38riyu6XO5c3VihU7KqYOsQ+1H/Y8XBDpWJlfuXXI9wjj6o8qpqrNatLjmKPph19dSz0WNfPVj/XHZc/nn/8ew2vZqA2sLazzrKu7oTCicJ6uF5YP3py1cneU66nWhsMGqoaaY35p8Fp4ek3v0T98uCM95mOs1ZnG85pnKtoojblNUPN6c3jLXEtA60RrX3nvc53tNm2Nf1q+GvNBZUL5RdlLhZeIl7KuTRzOePyRDu/fewK58pQx9qOp1fDr97rXNHZc8372o3r7tevdjl1Xb5hd+PCTZub529Z3Wq5bXG7udu8u+k389+aeix6mu9Y3mntte5t61ved6nfof/KXde71+8x7t2+73e/70HIg0cPVz0ceMR+NPI48fH7J2lPpp9ueYZ5lvdc4nnJC4UX1b/r/N44YDFwcdB1sPtl0MunQ6yht3+k/PFtOOcV5VXJa+XXdSMmIxdG3Ud736x8M/yW/3Z6LPdPyT8r3mm/O/eX41/d4+Hjw+8F72c+FHyU+1jzyexTx0TAxIvJpMnpqbzPcp9rv1h96foa9vX19PpvuG+l33W+t/3w/vFsJmlmhs8UMOdGARTicGwsAB9qAKBEILNDLwBEsfmZeM6g+Tl+jsDf8fzcPGcWANQ4AhCyBQAfZEY5jLgGwmTkOjsSBTsC2NRU5P+0lFhTk/lcZGSyxHyemfmoCACuDYDvgpmZ6UMzM9+PIcU+BqA9eX4WnzUs8g/liNQsdStlgf+0fwCN8AA6L1JlzQAAAdVpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iPgogICAgICAgICA8dGlmZjpDb21wcmVzc2lvbj4xPC90aWZmOkNvbXByZXNzaW9uPgogICAgICAgICA8dGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPjI8L3RpZmY6UGhvdG9tZXRyaWNJbnRlcnByZXRhdGlvbj4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cjl0tmoAACODSURBVHgB7Z0JmBXFtcdrxkEQEBQEDLKDssimiMgmA6KgGA3GxCQuyTOrxsQ1cUkUNRoxxuUlcX+JkWiixu0ZcWETAZFFQFZBQFZZxAUEBESYnF+9OffV9HTP9B1m4sxwzvfd6dvd1bX869S/zjlVdzrn19/9YcFV94x0JoaAIWAI7I8IzJ4z1zVp0sTVqlXL5e6PAFibDQFDwBCIQ8AIMQ4Vu2YIGAL7JQJGiPtlt1ujDQFDIA4BI8Q4VOyaIWAI7JcI5Oa4nP2y4dZoQ8AQMASiCJiFGEXEzg0BQ2C/RcAsxP22663hhoAhEEVACNHEEDAEDAFDAATycgoKXP1DGhgahoAhYAjs9wjkFuSYjbjfa4EBYAgYAh6B3AIDwhAwBAwBQ8AjYDFEUwRDwBAwBAoREELca2AYAoaAIWAICAK2D9HUwBAwBAyBQgSMEE0VDAFDwBAoRCA316KIpgyGgCFgCHgEcgtkH6KJIWAIGAKGgMQQc2wfoumBIWAIGAIeAYshmiIYAoaAIVCIQK4zC9GUwRAwBAwBj4BZiKYIhoAhYAgUIiBrzPZbZtMGQ8AQMARAwCxE0wNDwBAwBAoRMEI0VTAEDAFDoBABWVQxLAwBQ8AQMARAQP4fohmJpgqGgCFgCICAsaHpgSFgCBgChQjYPkRTBUPAEDAEChEQC9H+H6JpgyFgCBgCIPClu8y7d++usJ6wf1xRYdBaxoZAtURgnzdm7927111y8cVu9erVGYCuvOIKt2D+/Mx50pePP/7YXfLTn7o1wbNJaeOuL1q40P36uuvchg0bit1eu3atu+rKK92HH35Y7J5dMAQMAUMgDoG8smy72blzJ/8mx9U48EAn/1DRbdu2zTVo8P+vMv1CrL5DDjnEl/f55587LLWaNWsWK3/C+PGuUaNG7r333vMfyHXPnj2ubbt2rk6dOm7b1q3ugDypopS154svXJ58b96iRSafg2rX9oR3+OGHZ67xhXwe+fOfXbMjjnBjXn3Vfefcc4vcT3ui1muNGjUSH6G+BxxwQOJ9blAfBKxKE7AC31q1avl2l5Y+6X42ZSblodfTtJF680nTRs3XjoZAZUMgryw/3Xtp9Gj3yssvuwOFEPlAHCOuvz4zGD755BN3+8iRfoDs2rXLDT/rLHfasGFF2r5q5Ur3+sSJ7uxvfOP/CHH5cnfyKad4EoAAJ0+a5GbOnOlatmzpn9uwfr1reNhh7ueXXprJp5aQbJSMGLz333ef69qtm+t/4olu3Nix7sEHHnD/deGFvq6Zh1N8ueU3v3FHHnmkO+/884ukZuBDtGPHjPHWKeTd8/jj3TfPOcfVq1cvk3bNmjVu1F//6pYtW+aJvoW0hfZ27949kyb6hXwflWf++49/9JOF3n/xX/9yr02YoKeZ49BTT/W46YV169a5v8hksGTxYsc/7mjTurW74Hvfc23btvVJHvvb39yc2bM1ebHj1dde6xo3buyv0z76+oMPPnB169Z1R3fu7LEIJ7/Vq1a5xx57zC1butS3sWWrVu67QXnFCrALhkAlRiCvLFHEs77+dcdH5UIZADcJeTBokCsuv9xdIW5zs+bNNUmRIy4uhHnh97/vjuvZ09UWSw9SPXHAgEy6t+fMcT169HDf+OY3/bXxYk0uF2JBeP7pp57yA/6zzz5zDz/0kLdQId0//eEPrmOnTq5P377ujttvdyNuuslNnzbN3TRihCesbiWQkc9c/kDiENDSd9/1hKjX9fjsM8+4Z55+2pN8165dfbjguWefdWuFAK+XciDpTz/91Jf5la98xV0kIQWsW8jlzjvu8Fi1adNGs8sc33//ffePv/89cx5+eeedd1x9sbp79eoVXnZtComOix9u2uRuu/VWT2iXS7igQCxT6gkOd9x5pzv44IN9e+KsdcIPhBkOOuggnz9k+Mhf/uJOGjzYHS9lfiLhjSeffNL9Tvrt1ttu821cL+R7vUyEkO5PLrrIT4CjpY033nCDu/HmmzMkXKTCdmIIVGIEsrYQsbhwx3AjGfi4SFhlM6ZPdzXFzUN27tjh5gihrVixwqeF7HIl7aBBg/z9reIKdxLS2rhxo3v1lVfcUrEucI+xOneJi/25EFKcm6r/zBbi7SfWH+nmz5vnyW/K5Mnuumuu8cS4UqzP9WJRNmnSxD384INur1h01O1pIQcspOt+9St3aODi+0rJH9pxzdVXu01CLOQdJ7izkOXgk0/OWI5Yo3WkTpS1Qtz/dmJVjh83zrcdi0snik5HH+1+9IMfeKyihPiFhATu/dOfXK8TTvDWcbRsLLHTv/pVN2To0OitzPkzQtR50i9X/fKXGWIjxHDZz3/u5s2d6/r26+fzp4xQiOGC/aWXXeZJk3uTBU/a8X2prwr9TR1XSV2oP3jWFA/hGonjKsl2P+YYd7lY8c8/95y78qqr9FE7GgJVAgECdFlVdPv27Y7BC2FBchDit779bUesELIZdvrp7qtnnOHzxEqCZCDEkOAYRO07dHC1xdXkOiTCID300EN9PpAO5SQJBIPbuUlcOSwvyHWdWFccGzRs6PNjgJLn/zz8sGvatKk748wzvQWH2xpHhpRFW84orDvnox59lEMRgSyxIHuKZRtK20KLb6PUCSIhrnqsWLhKhqSlTrSXCSEqWHKH1K/vBsqkQbggFLD46KOPHHVPEjCeOWOGO/NrX8uQIWlxf0eJS5sU2yPvO3//e99vELsKE8Ih0h+hKOnRpwj9hjWu17nG926Sz3SZIJk4k8olrYkhUNkQyFOrK23FGHAIMSNWiQn+s/DBIgsWRLNmzdzBEkdjMOzG2pNP1CJhYOvgnj1rlk/zlsQLcemII0JyuKAQB24ksmXzZr+w4k8if2gDMTyIZMuWLX5wP/rII+5nsoLdpUsX7yqTP5YoccUkIZ/w/hP/+EexpIdJHPPmW25xzSPhgOVCDgguMnL+BRf4o/5hEsHV5hiGBrhPvI8FppG/+523mvUZPeoq/HsSZ/2bkPSnggs4Dx8+3E8spCN2SPiAiQbr7h1xgbfLObHDoWJVgmmcPCtETJ2wPkM59bTT/GQySTA9QSaWj4WQ6ZMOHTtmXGHyxC2Pyh65xqS2WfosjDdG09m5IVDZEMhjgaAsMkuIjK01WAgqDKwFCxZkLBQsRAZ7lBBJj5WBu0zM6WpxU7HssDBxWS8T162hnLPwAolAVKwyx8UkIdzfS1wOS+Soo47yaUdKjKuVBPfvk8WUaW++6eOKvfv08YStdS3rkRhbO1kFD4XY4VNPPOGxiLrCpCNuOF+woq4/+OEPXfv27TOP75Dwwn333usXPrCQCSNERbc0TZNYKIRNn7322mvuZomP/lLwIi7KRIBgaVKfY4491pPg0//8p5syZYr7jZB4aMmRFqt6jMQKcYtZHAsF0mbSe0AWqPgg9cSCJR+1+ohfEp/Fama3AEI9dNEGUjQxBKoSAllbiNo4XD+2x4SWxaTXX3eDJQivLikDk0EVlTenTvXkd5gMIuJWTWV7DNYGgXmsm0bi5kF+DEqIk4HFYFYrh209s2WlFFLAVcSCYRHlXy+84LA4G0vsEOvycXEVEeKHYyX2SUyxPMUTk6z8Ug6WIW2JE6wtCJlVc1x4SJDQAsKKcmtxt/tK/ZOElVtWyXGnFQNimNcKGbLCCyFiHSKsxt8uBKyu+kKZoG4VEiNGqNa9lsNkgzUftVi5/1exsCdI2/Lz810XWThi58DoF190v5J44U2yYEJ72T1A7JhFFCx7hMUvJgUmAF2g8TfsjyFQBRAQQixbLbHaWAneGGyKZlCOGjXKHShkiewQIouzP4mtYS0xEEfIYMIdI56Iy02+L7/0kreCIENcMtzBu+65J0NoH8vgZAV0gAxWFhv69e/v0w+TVWYIGgsGq4oVUSwaCBry8vnJkTL2VVjRfUgWURaLBUyZrLorWUXzZjEFgbTvktVerDYIZJ4sCBH3YyV8s7QJYXEJwbo+SIi8roQRsChDq5L7WHRYi/+U1XZimqzUI/kDB2bIkHO2yrSQhRXqeSYXCoW+mvnWW34CU4tP72GlssrMqn245ajHcce5X8jqNcSIpcsEc5usYGOVTn3jDd9/ZwlJfi6TFJ5CuAVJ87ajIVCZEYgPLKWoMTFCtmOEm54v+vGP3cUSt8PdRViNvEsC9lHB2oPMEPYSniv7/Hr37u3P4/58T+JxIdmwUHCPbK/5VNwzXYB4Z9Eid/ddd/nBzwBfKe42cbb777/fCRv6mCauHSut53zrW3HFpL7G/sLfyvYW2gkhHCEWblSoC8Q/INhKRBpimsQzia+xjQhr8RpZFY7K9bISTrzuBtnGg5UNMUY3oGOlQ/Ss6hPbRNQyDPNjstlRaEHqdUIJxHj7iOUaFf3lDyvGoUCAtJV9iSpco89DYbIidsgEZ2IIVCUEst52o43DKmGryyIhogOEgLC6cuR4jxABRwYqg31bCavFmtcssVRYMU4SLLuoRONhkAMLNdeLxcmeuvlioZwjG6WJaT0he/t+9JOf+Hgk9doXYSK4T7aeQAxXyzYfyo2Tj+Qng2w8jxIiRE3dITC20OBKh8JWpQeFxNmuowT4pMQnsbpuFEsytG6xwlgJZn8iH8iJtqv7Sr6sIhOL7ScTQSi4tFiV4T5Gva8LQ4Q8OouFqUJ/MqmwcINgGc4QC3ekTApaL0IYuNFY7SaGQFVDIG9vGb1HrCysQzYvs5n44ksuyVgpDGBc1oskJtgk8rO6OICwJrDmkkQHW9J9f73QDWYl9gEhlEESyyRGRvxxoZAEMbTyEEgIy5e2Y5VGhXggq+VD5Bck98tiCTFC4n1YrW/I4sZEiXsSP+ScnzfqTxw1H40FslVIFyryJXZ4r/xy5c8Sfxwq8UgsL/Y5zn37bfcjscpVzpRV54dkIekpcaP7CyFhFdI3u2VBKvpLIcgOUo/DlnKJG+KOs4sAt5uJ5UlZdYfwBopbjnQWaxeMCR2wrQms2TAPCeO6mxgCVQ2BvJwyWkzEuP73+ef9oPyaDMTQVfu6xNPGyYBlFRTXmPMDxSpKEkgE9zJJojEuTceGaxnReuqPuIfDJKbXqlUr77YRx6J+/HwvulWmyIMpT/TXMn9//PHYJ7Ds2IcHIUFuz0i8kNV0hEUGFiL4ZCMsuEBuxB5Z6EBYkWYRKlwQyRest8v+R9I9L1tkIDsWp0aI2x1OTOwGwC0OtxiF9eG5S372M79YxCIQVjECgV75i184FnkQ4prUASywhhHqdan8Uom0JoZAVUMgZ+QllxVc/ce7U9ebvYcMAFyu08XS4be0SW4jK5NsKeGZWyTmFrfqCGluFXJlS0eSLJafrd15990ZFxIXml9C4H7imv5WFk/eXbLE/7QMlzkquMmQ0lRZ3YaoQpcymra8zykbHCAVLOEkck9TLnmxQRu865eAFwtWpMP6jMM8TVmaBvLkPwbxe20s3zihbfQx/YJ1uS9tjMvfrhkCFYkAu1UIN+ENZb2owqDuKMH+8847r9gvGaKVxlq4VrZp8N9skgYmvy5hz5z+84FoHpyzabl24W9sOcdlZJUVN/vcwv9kQ2M6FMa2SBMKFk8teX7IkCGxeyLDtOX9nbLBrDyEvHTxpKT8wEbjgCWlS3OPxSyNZSalhwDT1CvpebtuCFQWBLK2ECtLxa0ehoAhYAiUBwKhhZhbHhlaHoaAIWAIVAcE5CfIRRclqkOjrA2GgCFgCJQFgdx93ZdXlkLtGUPAEDAEKiMCZiFWxl6xOhkChsCXgoDFEL8U2K1QQ8AQqIwIyFv3jBMrY8dYnQwBQ+A/j4D8CPk/X6iVaAgYAoZAZURALEQTQ8AQMAQMARDI3Rv7HwsNHEPAEDAE9j8Ecvfs2bd/h7X/QWYtNgQMgeqKQO5n25LfblddG23tMgQMAUMgDoHcPZ/Hv384LrFdMwQMAUOgOiOQW7DXXObq3MHWNkPAEEiPgPxSpfh7ddM/bikNAUPAEKg+COQ6sxCrT29aSwwBQ2CfELCfqewTfPawIWAIVCcEeF1edWqPtcUQMAQMgTIjYL9UKTN09qAhYAhUNwTk/yHaokp161RrjyFgCJQNAXOZy4abPWUIGALVEAFZVKm4GOL777/vX09ZEm68ujIUXmm5a9cul81/8k6blldqxqXllZ0ffPBB7L2wbtl8p+28fjQb2bFjR7nWIZuyLa0hYAjIP3dwFbgP8d1333WbN28uEecFCxb4l6/ry9AhyBdeeMFt2bLFbdy40W3atKnE57n5irxzmXcHI3PnznXvyHuc42TWrFnu7bffLnaL16RSV32/zKfynuitW7f6F83v3LnTEzQkzXdePs993n2cJBDbzJkzff2T0sRdnzFjhpszZ07cLX8NMt++fbtbt26doy1r1qxJTGs3DAFDIHsE8nJzstt58/LLL/sXkvMuXgYoBNaqVSvXtWvXYqXzTl8+JQmEd+SRR2Zebk56iKl27doOYpk+fbrr1auXf5F0mA8vRoeUNH/ICktPiUotPl7WjtSsWdOnjXvZOpZct27dMtnPmzfPEw/vf1aS5Obu3bt9nahbly5dXNOmTTPP6Bes0DfeeMO/1J1nlyxZorf8EeIHs/bt2/sXzoc3aUP37t39JSYS2o6AM3Xhw/utKZ92RK1rnzjhz6pVq3x5YZ1pz/r16xOecL6cbN+3HFdOtADaCS6dO3f2bYrep+3oBX1Zv359jzP6Fgp137Bhg5+c6FveQ12nTp0wSbl/pz9atmxZ6nuq06Yr9wrGZMgEPn/+/CJ3wKtu3bqO96Y3bNiwyL2KPqEu9FObNm18UdHzii6/tPyFrbL76R6DvG/fvh5MMoc8osqqhYZkotfCI1YgSt+iRYvMZZ6B5BjsKHmfPn08wfTv37/IC98hPAgQkiAPBiLPkSfXUATOOa5cudINHDiwSD2xrmbPnu3TqkVHJRhop556quPF91FhAGLRDh48OHrLn/MsZIiyxREJZLlw4cJYMoT0aEe9evV8XhD50Ucf7Ro3bux48TyWLxMHZIiFOnXqVHfiiSfG1iN6kfZhebZu3boIiUNMSrrRZzinX+LaEZeWa0nlRNNjjfPp1KlTMUKEKBkk4M8Hax9M8vPzPQ7kRR+DM/UHp23btnl8jj32WN/GaHnlcU7/rF692uv94Ycfnphl2nSJGZTzDXSSejOBojsIeDEmuHfEEUe4Y445xk+02RQ9fvx4rxuhIZHmebybBg0aZAgxep4mj4pMk5dTDjFErB4aVqNGDU86SoQADviQlxJc2Jjly5e7Ro0aFbHCuE/HoexYQwzI4447zlt44bMdOnTInI4dO9ZbeBARhMMM2K5dO38f4lNFyDwgX7CUIFzu42737NnT0Q5Ii3ZkK2rRYdEwMCGxUBgob775prcusIxUcMWXLVvmrUAmFr5TBxSVgY8ljPUNTkw+J5xwgreu2rZtG9suzZfy1q5d68lzxYoVXvn1nh4ZJGeffbaeZo5YZxDOUUcdlbmW9CVNOTwLiTOBoSd84oQwBWSIFUafo0e0nxeJMxGBK/LWW295PTvttNM8aaJbYMsEB1mhNyZFEcAii/YnpMhEyaQ4YMCAYuOwaA5Fz5i80dNshUk8yYDKNq+KSC+EuO+CQjKzQwI0VglR410oNQMHAlLhHgM1tA71HgTGfUx6CAOiguggWKxTFdLQKQwg0mCh8AzlQ1AMDK2LPqNHrEgE0sDyIm+IUIlszJgxmQ6n7pAYRBsnkP7rr7/uZz3STZ482adlAJMnzzOItf5hncCLelJf6s53Bj+WIaQPQdA2sANn4qpgQp25nqRclMmzSNgn0fqHdeEeFvW0adM8+VCf0iRtObjmTIAIONKGqNAX5Ec4QuuFNdG8eXM/cWHJ0MfoE4SpVjx92bFjR+/+c4/JJEnoA+pCO3mOCTeunfQpBM7ETBrqESelpeM+ZdGfED5eBjoPBrSVMgjZ0EdM0lEyD+uLbjZp0qRYaIA2kw/5McmRJkkvwja0klAXxIb3gWEQjkXazcRI3ZnkyZM+AX90FV3kHlhipWu9w/rG4cuYZUwkjaWwfl/G95IDfClrRANxSaOClYEyh0BrGmbzOMuNDgJ4CHbRokUeeJSJTzTegStAh2B9sKpLPfiOMvAdl7MkoXPoXPIePXq0j1XyHaFj88VNI94BmZUkWKa42Uqm/fr182SE5YrlSVsQrisRa37Uk9kb669Zs2b+g4KCDYtLHF999dVMm3RWZiEJpYrDnbzBAAtK5cUXX9SvJR6xFsCZSSaNpC2HmCkfhEUsFoWiQl+ApRKd3qc+hEQYjAxErMCoLkAGSElEgCfAZEUeEAekzAcLXOtGHrjz9Ad9xUDnu8a8uK+SJh0kv3TpUu+WMtFQT8gFAWu8J+pC2ygHHcEbQMCDiZaJD1wgIHBDpyAzBN3EsOA+bUf/ISh0F90qTVT3IFQdp4wryqH95AGpM8ngnYAh9aYd1JkJmhg/4zwNvuTL5EIbKqPkFQj5ZCsAogMbUACVTmPgY7noQkdSvlh7kBHP0YHMkFgPdAoDngFB5/bu3TuWNDVfrAI+KA1WBUBDJsSciJchKGSc0KGsODMrUybtod4Qcmn1j8tPyZB71J3YCvlOnDjRW3pYjmr1xD1P23GDGaw8x0AcPny4T0o9sWLSklRc/mmuMRCoxymnnJImebmnwSqJkiGF6DXu08fEk6NCqIF+S7LkSI97CI6QDmnRgSlTpvgwhRIi7UeH6AssUvoMXSVdKGnT8Qz9SR+iE5A55MWOAvJlImXSpd8hN8oZNmyYn1wXL17s60l/QEyMMUIDWP4QIhYnZMhCHOMOoV4TJkzwcUPaUJqAA/iSF8J4ZIcE8V08FNpPnpMmTfJeGuMM8mNxFeOhR48emSLS4JtJXEm/5OWWoWLMCOpmMKshkAAxL8CEyJKE2QbiJJag+/R4FqWgUzHP6Rw6IM6CjMu3JNcxLr1eg/yYdVFCBpvOirrSq+myPdJGBhUzPIO3pCA8eTNgmFjAAJcKbLGiVkqMB6JGSZl9sZJUaDPPYQWHoQi9n+2RAUlfYiXowk62eexretqkE22Yl04k3I8K9cbbwOWLizVresiPCQXrSyc88gVzrDQVrDkmN8hLyyUN51iXKmnTkV77SUkLnWPyweIib4R2Qy54OvQzaXkOHUWf0AnGCWEY9AEs8GIQxh04kAeWM15DNi4p7aUsBKsXwsbQUCFP6oNOom/UIypp8Y0+V9nO83KyW2Qusf6Ywaw+MVvrokb0AcBmVsQCUkKEBPmo4EIgzKCqMHpPj8xGKAtKAIGyGknHMpsRUyH+QScnkQXKHrqbzHgoqJat5WRzpD0MFJQdBYHQ4/Y9osw605I/JIgFQHsY2BAo7jPWK/UknpkvLpAOUJ4hD9qXxi0ifWnCQoda+9G0EA4DNRSwUtcuvL4v3xlocaQHlkjYfs7pY6wqcGMSBrMk4VkWFZikGPSQCt/ps3CAo0tYmVFijrY1bTqtD1aVCgSGUA9IJio6LiAfdhOMGzfOT1LEMtEN1QvqyThjvKE31JE0lJU0bqJlcU6/qxsPJoQR8LpC0fCCTtzhPb6nxTf6XGU7Z9NfudUJJWIGoxNbiUmfJBqATbrPdTodCykpDqhEhzITR6Q8yIFZEyKigyEMzpk90wjpcLGVFCFd2oSCRgeE5oeCQILUASsTYqduWNFJgkUaDkLyZpCg+Cge7rW64ORLvUIFpU0oINt/ogM3qczSroM1uEVjczxHe6IDLHpeWv5p7tNmiCoq4IqEVg9uIy4lVh8xQHWro8/qOaSKm0r/oltYXByZPDXGS1oIOewbfZ5rISGnTafPh/VT0scSD9tEWuqlFjrfhw4d6uN0xOqwZCFQdCxfJkjwwq2HFNETJgji7roiHxf31ProEeuTCUX7k7qRL2VHBTKOw4Z0afGN5lnZzvMKstyHSAMATUkmqhjMUEOGDMm4JWVtMLP5xML4W9ygVzeUjoD4OEdhsWQgNJ3xUCDuxwl1Z0ZEkSAi3HTIibK5h0KhyFif2t5oPtxHSYhBMTMzU2NtqVsWTc95OLA4Z1BA/GohMnAhVC2bCQR3imA5gutGfCgOF58gyz+Uy4DDLYrWjawgRJ2Assw6q+QQAQMbwg8tX/qItmoIhQGPdVWaVRgWjueA5X788ccXicVCiKGgO0yA6FWIBXXgmkradKQnnzAvnXCxaKO4QnpqMPCdNkPcfBDcafQDPUfHsVSJ5aGzfNBjJlyIMQ0hMqlQt1aFBgx9gGcW/aEFbj6TdkjsvkKFf9LiGz5TGb/LKwSytxBxobBY+DDjhopCI6OzXlkazowFOYU/wyOOFiUmOoIZM6kdxMTirDVI4LnnnvMrZlggkFq+zLoMMqwkziEg3BIUS8ko2hbKxaJDofaFoCAkBuzJJ5/sZ2csIBaamK2pF5gzQFiQIuygAyRan7Kc62BPamNZ8izLM6xkoksMZhUsGEgA4qBPGJhYdMT0SnKR9Xk9qpWpZMN1rml4Q9PRj5SB1a/C5AgJh5I2XfiMfod00Ct0G/JXQZcZU5Acgg4QEgjHl4aW0DWsaSZx9EKFsUcbS5qQSQtxolMsyrSWBUglaSxuJolwMZLyia+DgY4zjuCikhZfTV9Zj1lvuwGEcFGFxYMoSWljQ8D0Wngs7T6zFPEzdW9Y3WaGD91XFDccGOQZKhCKEaccEA2rd6oI0RgZK30qOosT60srYR1Ke4aBQNuwAlFm2s1ARQEHDRrkJxgwZxsPbSnvVWB1U9VVK62+FXUfksDyxfrDGgELLEbarBYLEwd9zEAGo6hAlHFuP54Lfc7WF/oTImKCRZewiCAHwj1MNBAEeg0pMPmQLrRYKTNtumj99JyysOTYUkUdaBNtZVJQfWNhg/ATY4A2aRr6iTSQIu1iexseEmRIX1LfcPWXMiFfYo0I+RDqYYIhlq0r7NwjXwwAVrOpF+2HIJmY2LytwrgBf8rDIEiLrz5fWY952QxcGgEQIcEwowCwCorMfWYMXI+Slv6TiFTzwjwneI9SMFioK8CrYDlAJpCkCnlG86XzsQiZeXWGJb2SId9pQ/Q5riOUwQBCARhUJQn5QJwvvfRSYjJmZ3VnUDRmeZQSYqeNWEhYhyggWK6U+B7XcGlRYgYIzzN4wvYkFig3cKeSCA8c2GaRdL+kfKP3SipH0zLBxf1sj/sQBa4gVg+Y02baql4HLiTPJommi95Hl0466SQfg8MCBDfyYcBDvGG/sloNttQBvaFN6DlEHZJtmnToa1x9wYCJDR3WMcOiJDqgVhiki8eA3kHaECDkg9ejBM1uDe6rjjJOmBQ4IuARLZ98wBHCo+1RgUy1/Ywd6kEfaMiC9KQhPAQ+YJsWX+KdYZnR82hd/tPnOTd85/yCmx4fVW7lYrHpyiqxDX5ZEhJoWBDpUPrSNmmiDGwJQVl0tY7nWNFmAOlmavJmIYQBDtAqdCobmbmOS6wBZL3PEfeZuoZ56X3ikFgMKJnud9R70SMuLQrOb7CThDpSDkqHkF6JjXgncR3aitKzpwyiCssFD9JgwTDIGdQmhoAhUDYE+GkokzCknjPi3AsKbnzs0bLlFPMUAxrrkJlJZ7GYZP4SlhKSNKv7myX8wZrS2bSEZKluMdNB3FhgUcmmHLWW4/KJ5pvmHCzpqDgB66TJJi69XTMEDIHiCISEmLXLXDy7olcYoGktlrISoZZYXmRIfqHLpPnrMZtyyosItewkMuS+kaGiZEdDoHwQKNMqc/kUbbkYAoaAIVC5EJD/8lq5KmS1MQQMAUPgy0Igd2/22xC/rLpauYaAIWAIVCgCuXv3molYoQhb5oaAIVBlEMg1OqwyfWUVNQQMgQpGILfALMQKhtiyNwQMgaqCQPFNd1Wl5lZPQ8AQMATKGQEjxHIG1LIzBAyBqouAEWLV7TuruSFgCJQzArny6zcTQ8AQMAQMAUFAfqliRqJpgiFgCBgCICBsaCaiqYIhYAgYAiAg+xCNEE0VDAFDwBAAAbMQTQ8MAUPAEChEQBZV7MfMpg2GgCFgCIBAbo65zKYJhoAhYAh4BIQQzUI0XTAEDAFDAARsz43pgSFgCBgChQjkZRNC5AXsJoaAIWAIVFcE5J0q6ZvG6whNDAFDwBCoTggsWbIk05x/A8bIdqBQuxE/AAAAAElFTkSuQmCC" alt="" />

上一篇:yii2解析非x-www-form-urlencoded类型的请求数据(json,xml)


下一篇:MD5加密算法测试