数据的存储

目录

前言

一、数据类型介绍

1.类型的基本归类

二、整形在内存中的存储

1.原码、反码、补码

2.大小端介绍

三、浮点型在内存中的存储

1. 一个例子

 2.浮点数存储规则

总结


前言

本文将为大家分析数据在内存中究竟是怎样存储的


一、数据类型介绍

char        //字符数据类型
short       //短整型
int         //整形
long        //长整型
long long   //更长的整形  C99
float       //单精度浮点数
double      //双精度浮点数

 

类型的意义:

1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。

2. 如何看待内存空间的视角。

1.类型的基本归类

整形家族:

char
    unsigned char
    signed char        //char=unsigned char 还是 signed char 取决于编译器
short
    unsigned short [int]
    signed short [int]
int
    unsigned int
    signed int
long
    unsigned long [int]
    signed long [int]

浮点数家族:

float
double

构造类型:

> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union

指针类型:

int *pi;
char *pc;
float* pf;
void* pv;

空类型:

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。

二、整形在内存中的存储

1.原码、反码、补码

计算机中的整数有三种表示方法,即原码、反码和补码。 三种表示方法均有 符号位数值位 两部分,符号位都是用 0 表示 “ 正 ” ,用 1 表示 “ 负 ” ,而数值位 负整数的三种表示方法各不相同。
原码
直接将二进制按照正负数的形式翻译成二进制就可以。
反码
将原码的符号位不变,其他位依次按位取反就可以得到了。
补码
反码+1就得到补码
正数的原、反、补码都相同。 对于整形来说:数据存放内存中其实存放的是补码。

2.大小端介绍

什么大端小端: 大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址 中; 小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地 址中。 为什么有大端和小端: 为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。 例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式

三、浮点型在内存中的存储

1. 一个例子

浮点数存储的例子:

int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
输出的结果是: 数据的存储

 2.浮点数存储规则

num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大? 要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。 根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
  • (-1)^S * M * 2^E
  • (-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
  • M表示有效数字,大于等于1,小于2。
  • 2^E表示指数位。
举例来说: 十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。 那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。 十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。 IEEE 754 规定: 对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M 对于 64 位的浮点数,最高的 1 位是符号位 S ,接着的 11 位是指数 E ,剩下的 52 位为有效数字 M 。 IEEE 754 对有效数字 M 和指数 E ,还有一些特别规定。 前面说过, 1≤M<2 ,也就是说, M 可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。 IEEE 754 规定,在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后面的 xxxxxx 部分。比如保存 1.01 的时 候,只保存 01 ,等到读取的时候,再把第一位的 1 加上去。这样做的目的,是节省 1 位有效数字。以 32 位 浮点数为例,留给 M 只有 23 位, 将第一位的 1 舍去以后,等于可以保存 24 位有效数字。 至于指数 E ,情况就比较复杂。 首先, E 为一个无符号整数( unsigned int 这意味着,如果 E 为 8 位,它的取值范围为 0~255 ;如果 E 为 11 位,它的取值范围为 0~2047 。但是,我们 知道,科学计数法中的 E 是可以出 现负数的,所以 IEEE 754 规定,存入内存时 E 的真实值必须再加上一个中间数,对于 8 位的 E ,这个中间数 是 127 ;对于 11 位的 E ,这个中间 数是 1023 。比如, 2^10 的 E 是 10 ,所以保存成 32 位浮点数时,必须保存成 10+127=137 ,即 10001001 。 然后,指数 E 从内存中取出还可以再分成三种情况: E 不全为 0 或不全为 1 这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。 比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为 1.0*2^(-1),其阶码为-1+127=126,表示为 01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进 制表示形式为:0 01111110 00000000000000000000000 E 全为 0 这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于 0的很小的数字。 E 全为 1 这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s); 好了,关于浮点数的表示规则,就说到这里。 解释前面的题目: 下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000 ? 首先,将 0x00000009 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 ,最后23位的有效数 字M=000 0000 0000 0000 0000 1001 9 -> 0000 0000 0000 0000 0000 0000 0000 1001 由于指数 E 全为 0 ,所以符合上一节的第二种情况。因此,浮点数 V 就写成: V=( - 1)^0 × 0.00000000000000000001001×2^( - 126)=1.001×2^( - 146) 显然, V 是一个很小的接近于 0 的正数,所以用十进制小数表示就是 0.000000 。 再看例题的第二部分。 请问浮点数 9.0 ,如何用二进制表示?还原成十进制又是多少? 首先,浮点数 9.0 等于二进制的 1001.0 ,即 1.001×2^3 9.0 -> 1001.0 -> ( - 1 ) ^01 . 0012 ^3 -> s = 0 , M = 1.001 , E = 3 + 127 = 130 那么,第一位的符号位 s=0 ,有效数字 M 等于 001 后面再加 20 个 0 ,凑满 23 位,指数 E 等于 3+127=130 , 即 10000010 。 所以,写成二进制形式,应该是 s+E+M ,即 0 10000010 001 0000 0000 0000 0000 0000 这个 32 位的二进制数,还原成十进制,正是 1091567616 。

总结

本文讲了数据在内存中的存储

上一篇:计组——浮点数的表示和运算(考前记一记,喝前摇一摇)


下一篇:数据宽度和逻辑运算