pandas 数据分析展示

%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import math
import pytz

tz = pytz.timezone('America/New_York')

def geodistance(lng1, lat1, lng2, lat2):
    lng1, lat1, lng2, lat2 = map(math.radians, [float(lng1), float(lat1), float(lng2), float(lat2)]) 
    dlon = lng2 - lng1
    dlat = lat2 - lat1
    a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2 
    distance = 2 * math.asin(math.sqrt(a)) * 6371 * 1000 
    distance = round(distance / 1000, 3)
    return distance


def total_distance(d):
    lngs = d['longitude'].values.tolist()
    lats = d['latitude'].values.tolist()
    total = 0
    for i in range(len(lngs) - 1):
        lng1 = lngs[i]
        lat1 = lats[i]
        lng2 = lngs[i + 1]
        lat2 = lats[i + 1]
        total += geodistance(lng1, lat1, lng2, lat2)
    return total


def time_4am(ts):
    dt = pytz.datetime.datetime.fromtimestamp(ts, tz)
    n = dt.hour * 3600 + dt.minute * 60 + dt.second
    return abs(n - 4 * 3600)


def most_location(d):
    values = []
    lngs = d['longitude'].values.tolist()
    lats = d['latitude'].values.tolist()
    counts = [1] * len(lngs)
    for i in range(len(lngs)):
        for j in range(len(lngs)):
            if i == j:
                continue
            if geodistance(lngs[i], lats[i], lngs[j], lats[j]) <= 0.1:
                counts[i] += 1

    i = counts.index(max(counts))
    return lngs[i], lats[i]


def location_near4am(d):
    values = []
    lngs = d['longitude'].values.tolist()
    lats = d['latitude'].values.tolist()
    times = d['timestamp'].values.tolist()
    for i in range(len(lngs)):
        values.append((lngs[i], lats[i], times[i]))
    values.sort(key=lambda x:x[2])
    return values[0][0], values[0][1]


pd.set_option('display.max_colwidth', 500)
data = pd.read_csv('d:/2016100200_part.csv')
data = data[[ 'device_id', 'latitude', 'longitude', 'timestamp']]
 
counts = data.groupby('device_id', as_index=False).count()
print('Number of cell phones:')
print(len(counts))
print('Top 200 active users with their location counts:')
result = counts.sort_values(['latitude'], ascending=False)
# print(result.info())
print(result[['device_id', 'longitude']].head(200).to_string(index=False))

data20 = result.loc[(result.longitude > 50) & (result.longitude < 200)].head(20);
for id in data20['device_id']:
    print(id)
    d = data.loc[data.device_id == id]
    d.sort_values('timestamp')
    print('Total distance:')
    print(total_distance(d))
    print('Home locaiton:')
    print(location_near4am(d))
    print('Most location:')
    print(most_location(d))
    print()
    plt.title(id)
    d.plot(x="longitude", y="latitude", kind="scatter")  
    d.plot(x="longitude", y="latitude", kind="line" , xlim=(-74.025, -73.9), ylim=(40.7, 40.9)) 
    
 
Number of cell phones:
151032
Top 200 active users with their location counts:
                                                        device_id  longitude
 ebfe4ed5130dd5bdfdf7f5d1fb6b977875512e7da3fa9efb190fedd767b8a559      10466
 9a47b0c904dcf078fe18fbb977fe86a092c601eb5752115639f4ebeb8c66e859       9811
 289d023006092608245ad6bccd7512fb99778fd3316e219091a1b1cb7a09d119       5060
 4e005a81c7394afbae96894f1af997d6353e35af5b31795d05e24cc6896870c9       4097
 1e70c3e3dc519b99ea23b34fb499bf850e560853c2032a257e8af1ecb58fa677       3309
 61033d5156177fd4177bb84c988a7f4cc59a3ef78bc512e80c1908e60c9d953b       3160
 765131a0e1bc3028ee6e9e8a664b1ffab475f48a761cbe72076410454ddf8037       3012
 cf61b5c95baf3044b8219d3ebeebc4af94ba7db86a359ecd1278a69601866bb4       2828
 ad56f264eed42bef641db2fd8680424e9fe55614e9f8433274d885279ff53462       2276
 147a9dd32da4c3e09d2782579ad9a5973e9a0d7da93d162bb35de47f5b75ef79       2235
 b812fd0667403efcdda53af273c45a88686f67e442c934a8a27c07678b51005d       2184
 d1a42dd42384d79786969a964ed4d79ddbd73c7996b38e1aaba530482677656f       2021
 58552b1defe8a59bfd5a6cdc886f77da78116d584477c424215856334fab4f6d       1972
 351171f8856be01e1a08a154e4e797070c21632a53a1692749df39ae2e3e12e1       1885
 d196c74da3838c80f6dbb5aac93581eae24404980e66488780dbbd47c2aa1fc6       1786
 de8fdc96c10b4c4ad108af613556baf2e4f735d08a87eb91a0c01d1328ef353b       1708
 c6e084452f38daeeeadaf3461accfe7aed374aef20685e4cc14deeac596946ab       1581
 fa07ac4156b257b5137e1030ec08d2e1b89bb9e59e1224680e60d3d5d76231f9       1461
 678d6cbe48a7cee15adb9655435a76a33a01a0fa45a55543f15d28466c7edef2       1406
 0ef45caf5971d1891bead27a9e72d0541dcdb5bfecb3867401e1927b3850d019       1382
 1dfa2685048e6f0fe2626618325f984aeef8fac9a88a0fa4aa8afd2ac1def49a       1377
 1795f9e9d5249f6772f315b005a8f0ea49c306f6b0643c05937a21bab8fcca77       1364
 6ae19d86e9b5b130da7899d68fcb74577ea1fb705c3c93ded9c0528144f49099       1315
 f7497dbc6997480e5f561705dda27d8dbbdb5e330a8aa3f59ffd0dd5ad730eed       1299
 7f628d508d6243f8724d52f4810c0dcd0532a7a50d5a1fed58664168a351605f       1294
 7c305b70f7a9216e3cc795a87b009bddf2d5c981e5f68c2a407dda9f889f6244       1293
 3c37306f6136e75da5a533e68f7479fa940084a437fdd30efcfae1b67f7c5048       1288
 50ddd120b19f287940f0c608969890bad43c6b7f82a626af1662b9d7a15a5027       1286
 32cae7e50bc12d89b0bc5f54a4b1cf37957c72bc28f14e9e00f783a4ed16cd00       1274
 d1f43c194a73bf5c789cb9ea9206785a98118a8cabf4df58fc36888d3fd11913       1248
 6d83e7a97a8a512fccddb44e8309cfbab34d6b29ed1b5aa909c8461af73c1216       1245
 74614751f0de34a1c9147819d425161f717caaaf2d187eb2ca047612350a178c       1228
 c9eefb6a0e0f0dfcdfca36fe554dc34e1aadcbd5248c6d03547f37e9654356a3       1226
 21b885daef682df7c98a3345596b8197a8b3471ef46dc51703ca567bab3203b1       1210
 f7232b213ee8730f87d4b932fac49fe3b7a34410aa696a8a0add61aaf9bf2e90       1209
 9dbc41ac7a8f920944b495143a54178ddf72a0fb253522d427ab66b7a61aadaa       1188
 816a3cbf1285d09c3937d543060c414bc6b77f8a928c9b769b1daf4c9568c5de       1161
 dbfc3799ea6f961789e346addb2c7064b235d6b0182f0b0a5de4f1b333fa4f33       1159
 33168e300c663384187e314626217c486c5466dfd223dd35f07513cca179baba       1144
 4183455b5b86a7b0a1d1b116d57074dc52fd31603fec548236cc4a6c363d8253       1138
 e2f79f94efd44c8f95bf5509a2f42b79f40160d304a04ecd6d71fe095c0f9673       1134
 90c41b3c32e3fd623d691f0dd8dc5240192eb3d0cbd8d139b6175baa20aa3a57       1133
 675656613005c9bbf48013bf97e81ff06f5243d73114888d21d062cd1d8747ac       1128
 eaa44710ebf7e89c24a015a326ac3e846e8adaade1f36701998d54625d2e723f       1121
 483d4b23198f2317b711ba3033e4215fe2afe57268f624d8a74b21daae729864       1105
 a617843488aa3c70962dc6829fd839ac62f697dbe0f6a828b2f3267359396926       1100
 9b875085d4f7898edfb4d01d120071833ce8000b70babb454b06bad8aa9ca45f       1088
 abe05f891cd72f1ef7b8dd1924e7d39a0c181dfd8e7b93e5e6223bcf119d85cc       1079
 73c34901c26f79683f8a082116b9cbfddffd46c9f61a466f066381b032d40b49       1076
 05f59bf3fadbb8495ca603c98c6758cfe9da54131f652622194f35f9d0249b0a       1070
 22cc84534658636c0da1297d9c1b785f29fe92ee5d092a4abf0362efc2e4b9b3       1063
 d3e205350f408cf71884545d6418b87aaf3f667710eb7e9dfc22eb1620d4baf4       1062
 6dc03e846dc0f98d0e5e0d9b049a7fd87411a61d2a0d5e3614c8220e21194525       1062
 05ebd2a477dd60d1214bc291a31c1369d22da49816d77f2d5c3c28a983fd4b86       1051
 dec4e1edb7d790c32e32e33adb086151815b009a761ff6558528ebc1d2230eb5       1049
 6484482a1e1203484188e97863ba1eaa1fa09e906d539eaeb6179928977cb2fc       1047
 23f46aabfb8c8f3787eda1932a3e11cc4e96b55418c82c0e1f766ebd3cccc13d       1044
 0877690de3e9f047c32f3a5adfc7f9bb973dec7213e6ae086032928fae3bd2d6       1041
 8e6fb97af5193805e089500e34bb0b4bc3750ae0b8232a8b951f3933fb9465b1       1040
 1dbcd802ef4879a9b178bfb5eafd5519b8e48686b0f3928e5e162126c4ee3f7b       1039
 d909b2ffb495064dcff0dc8b89733c508c11724c81cf69af3b9a26bb3172e4e5       1037
 8504a930831cbfb9f10183713e25f672fb158890eb4c080cf0209550cc5c1ebf       1036
 6b62be641e0ca7e6e32f2e628730b05cde54461276ae6175a3251e3fa36cac13       1018
 532737adba8c40ad231dd9727d1793a727555fb2dae64a526977b84f8bdc8a7c       1016
 bc5bcfad0583b4732a2a5a90f19e6cbfa051afe77a8c5e90a33cc260bf9df639       1013
 e1260936350766fe89b01877263963e0417384d8caf8012f53034cee0b2ccf35       1012
 d4fe7cf0f36635089640b22099f0049819aafbfad562416ecb14b8e242bfb6d0       1008
 34c1ce6b57901faac6eea61b41263af585f40400d1454842372bc08523443762       1006
 0ef321cb28068da6521c3ae5473188d4d9db1e17fdcba4450c8a411e4d68219f        982
 7d259128ce0ea31517404c202e5c9a8f54a1487696d254720092a97da593fcc0        982
 98c617be4b93cca2c06c65ac7539a2593dcf0e58cd937a0a59cfdfe4515cee2c        980
 ad5a16355a9a593f41e621a4bf9c14fcc7d4432806bae205897d2dd312f31217        972
 63030964a8decb9603e6b52bbcf91b4326aca18963f8bdd7cb322676a07c286c        972
 04932537e56abe4005ac82990d341ef023a91a6daa57193e9841a6886beabd2a        968
 f3ebedeb6dd91254f2923bfe3740dfdfc1bc5114d0cea62e1a0140bb2787088d        961
 1bf8d8dd19b2d43ce0bea4a75cf879c1be39927c6de9cb2f9166eabf15a4ebd6        959
 037f6f034aeab476c8aff9064c8063f7094ab6f4a9a8c24ebc7a4839b0d1c8d0        946
 aaf4425cfe8db414f690f71e5643650b919177d4163e5be548cbd9a89126bcf3        943
 862d37b066d5ec11e881006e7691562039193938ce841116aad099213a56cd7c        932
 46778f7b0e16989e6bab19013be2c34ee533d1176a20e358b6f9a77052e6b1b3        913
 671c0821ed1572769eaff1faef6e389e8f81d14d5cd274c42f6c1ffa3f2050b6        907
 fbf60e0a57fa24efa2a43ff2c90b285dc2eabcbc7590748dd8f8ae5ed56c3798        907
 1620f502688df51d822c964f6d1195f88617f3b42eeb1ce60bccacb684140d38        903
 42ab1125d84632f8ab0f872eb93c69f74735cb42832d3c9674fd49eac8cc5331        895
 1b17d3f212cd083861aef0855ca988654a41f63fb27cfc42fd67a181cab1b160        893
 bfcc612f88c7fa7511dbfdc6002686e1d5ad169f034aa02c79c7f423feac6c74        889
 9d904ce05bdf62a7b78743924cb7cc8f53e883dfc3c3d2a04689a2faad900491        884
 855aaac89be6c50e9185409c84781c3ab4c1b7a08f334e5fab59c27c7e12f1b9        883
 73abf55671b68628d780363fe56421131676cd27e699e5308dca4c06132fb70a        883
 60d92b7ee17e88a8740d7656b23936c70b22bc7ddabeddfc0f3aa519b3f7d681        867
 2d0a279038d8f5799d9c2eed3b2fc270d761ac0d5837b385b027fe94f466d346        866
 053c77a7eafc3059f03339b2c3a7f96ae2d46c3416b2f7f1db73f1ee6d5a3ac3        866
 13c87b91ab992666b8298ac4e380a748c9c77a3bb3d81e66cc5973015c19cf3b        865
 c71972f1f24c801841e10b0c70b06c81b55f94e3e3b2e7467964114bac9c744b        861
 94ea24fca058b2289bc6a8d3adf2f6b2d9da30e20b978322a75284ab72bf39d3        861
 be6ad9ea069f1ba8bea02b71d04e24466161f7e6f76ac5d0df81a9500f6ae8cd        860
 ea3d20854692a50a9d2bdf9b56d54187a84ab8ed950601b33df7e5b49368728f        857
 130d4d25d0a6d1541143e302ff06c0983318639a4a47272c54cb85196b13e4c9        855
 af72eb28d06fadc19d4a00170a027d4cf10dff7d11e6cbf20a93c9f29090f693        845
 9c02f8886a0855a6a20a1b165338392ae4b7f878d09470f2adaaef6cf9ecd1de        836
 0241b7472d395e94cda4567a7bb847fa05af85def977e1b975497776f82e49cd        830
 8077e7fda5f119af7a863f64f2c38ec03c8b6e937c984f59af5c7c6e1bb2d818        830
 8faa619e60d2cd38d30eae027749fc5b0b1dd8b524c9d05ecb319f435cfe820e        830
 474097baa609377d39899e04fd809bf8313244419a39f5863c1dbc83b90e5348        823
 d67c4015b8db4b665371f5d05ea917fd92e17e3d7d09613ebb9c3d0896ee9ee9        819
 e5cd1c48410318cd863e305d7db4cfdf23d2ebe23be1af28e433d62fa8025aac        817
 1f91b5b2e51c392e40e4c079ca17e8cfe0366d44393369bf8b400db1d2b9998b        816
 113289423b5e83482bae2be5f9b28ac856c394457d4e1f6499d266aaa78775c5        815
 7a4bdcc469dd423ff42bd8c8de09b01d6fdb5fb0507ef42e3fe1dec5256b63d9        813
 e68866afbd4a0ff099a99dfe9599f854742b0e3d4ae472fd2aef6bb2e96f11d8        809
 640fda315265738319d7bef47a79cb43707c7d30eface20de8cba27611364f64        806
 4d7df5f04c44593ba5b13ec26d593c02dfa67d8d6a99a3e649269d89ad10d70c        806
 d128166d98de01d32e9a149797018c87795a3cb7b94baac295fde64355b692ee        806
 59a963d528403708cebf8b05970361313d92cbf66f57f34a434b0202fea0dc2a        802
 de16557b70f66f096bd6baebc16a042654a4744816df732f889b6fc714f87202        797
 6ccb170b0a9226374344b52e67d0f47aa600e42878026a3766a2e4eba3d23e46        796
 f2dee2f580ced855f172fe0566c16d1bd9c3fc8887bbaeefef05ff04ad0f0991        790
 2a7e2038cdcb353e84ee628b0a5533455f08da07a22eccf8634cdf09c337a897        789
 6a66eba6679cdd5121aeaf7b057651d271ca851015f24d8691e06e255668cc1d        788
 b77556a583438abf95e24e162447cbc9885d81f7f9ab05249090dbccf4395437        785
 bf9b4c22501212343c68e120bd847df1ee0a65f4e37c7feb7984e7f82d5caac1        785
 a1aa70d8927b1752e83877aeb0cc1f41506361ea47832ac0b7e3d110090d4f23        782
 e5db1cdae81dda7ff87e76b07646075b0ea5897631de868a956b919127fa2058        780
 aa1a88b83eeb28c01f74bc5eb22efdbb14ffa3327d072569c0936181105f49e3        774
 5b8661af529a12eeab8c601fb96907078ae7bec1ce9a4aca985c88dcadf42361        773
 b3551283a9523a804ddb94787ab421f3857469cd79968f1ff6a43e8c2343b66f        771
 fc819533addfb982103a5c2fc4ce97918b8dedefc533ab8402f415724e68e690        770
 65d36e53bafa03877a654f2edcfd621421c98b3d7b8016c390c9f1b1d867fcde        769
 36c924ca3a944d18508d6f3ce82c2950f803a665894003f457bb1705f1e046c8        767
 9dc98b4a48b01e2bc6bee19a8fb501d24832528742a51e3576be391d2b91ad10        766
 51ea6318280e57f0f082b59e9ca5f0f0bf2a378aad99e64db57e165ddeac836f        764
 c62e61551248ca582dcc3f78112ab45a0652b5b4d1ad48943591584d7e1ec475        762
 30463d8285d92447972c6b3012a2c6faa04d2e2827879c732975d18cb17d9866        759
 a8dd73d934213abf2ad2ab5d310f9d34f130fbb9af3bb92a872d2bb76d8c0b88        759
 b6c8d6b9350642c892d061d974cf1873bd0c95c3c99d5095e4dfaf7c8562c468        758
 8c66af34fb73649aec79b185194afa6c61d18395f187d15df7cccdbbe685026f        756
 28f5d28740cd5230593fd973e50b17f073f76c151b99417617f878d85098ed7f        756
 98f8f2fd1b7c52d784519d14140c15661d0a0466805b1a6a99a24ecffb6cd792        756
 9e403aac5f3334965da2fa47912a7015f18278eb945dc85e497b1305825e67af        754
 02f462168fd8ea4c46f37cd975536dd241f1d9b3d5160275991fe057cfc803d5        754
 2fb86c97712efc354b6138f39a1e204189568bd37e6c971aa0b511348a6cfa4c        751
 f86406725f17362d440c8d053b31ff28ed41a2acfe7e7c68fe3e81f9a2a3b562        750
 c584c86defae86e83be83c2fe6832c13e8c465aaca1f248968616d3faa18dabd        749
 4d3322769ff506b1924a0cdf79bbc5f81ce6bf0ab97f6398245796dd196100df        749
 2d080da08e090fe30bc256376691de0a73de970ecb9c4b24007814c2786c050b        749
 e6292baf7e4f6b79fb123b64d758806ff3d451c67a6e01b22dedee939dfc4ca6        748
 31cd811b2afd3d7b3135ef26aad93f3f429ecd45762f5522628cf1407387cc53        748
 f9d0af05310c7d505ce654f8eaf57ef26479c00558f47844bef55c18a0f4e9b3        747
 6fa9922dedf4e4037b4bcfc670ca2652db8ee7ad71e95ba9713b3b6556cd506f        746
 1d650dd54d197ddb0c0557c76334ab1fbe21c4b5a23eaa94ef2dd5aef7206262        745
 0a3b0de65727e6d53ff93368066807ddbff124d4640ad63398256b4dc3625bd4        745
 acde3100c3f97970d308107e15eefd366ff8606dce757e8586bb3aac1596e9f2        744
 6a78f773cad1c3694eef21da9bfce119852fc4140e25031412b6e2a9acfafd9c        738
 83cc5d8993a4d298111b0ad781f60af274b120c047572461a31c4c43b5f1b342        737
 bb6edee0510589446d0c436dad7a2b6f9d833c76a7e9739bc56a6e16103c5df6        736
 a1a71e541a964fb29ac67eee650cca14233a1b39450003459c156dc302407610        731
 0a6a762ba38af60419ccff9f279088f97c3dfaad91cca2af216764fddab16aa6        731
 7cc066332446b57e530cb40b5241a00d61de9a03fe49ca33173fa3776cd56680        731
 16ca0470afdca3bc031b5db43bea5b1885bcfb08b4d1f67f7c5dae99cf2864fb        730
 e9b6decf9ccf4c36754cf9196a101cb4d4a470d28e5eae66bf6bb92b508ec341        730
 6c3e25df99b496b1b9b4b83271bee441a1a4fdbc1254eef6e76dd06f8d69721f        729
 287aa8c03821f73c98ff92f0fb9af2f50a3d16221bbc2e90f7d11d0b2f61ec27        729
 538afc402b8c4cd627eab5f749820d39dd4b88ffeeb7323ef347e8b4d2a8651a        729
 96382ea191347a4b37f942bbc38569e821638425f01cba286510f39fa3ac030a        722
 c35ae735a3d9fd51f1c1faccb3a9937392e1ded7a06570d5867c195016487b3c        720
 f81122727ef54ab2e86a3d680b6cf3dffe41755f35ce99f1bf7a3eddad920878        719
 ad337499c9cf7a49740a6988db6068d24d57902ee0e7496730a0bace4c296039        719
 7c33d7bfaaf0e894b62c9180fc78b7fa02a7aa4553e74593d3b661196b8a2819        715
 34b282c45addfc7b350ae63d45a2a4cfed4796f2d34261daa6421a86b1814c35        714
 7b67f17a237e409ce76b31403238673573034cd87304be044cde6f8664f48de6        713
 6c63cae9b3937f70ab980b87848d96f2a84fe2c7eb4cdc3b95aa4096678bec8b        713
 70d2dd0d3b39ce41e01cf49f5c39c44afe46505bcdd898df30177819e27cfa39        712
 09c7f656bdf3668035dea006a48bdf455c2c989e09d5fd2861ed6777167d7807        712
 cadd2b6bd9af059b6e0b149ec0f7226df90ecbbf943a9d2087d48dda270f5c58        711
 8a9cd3c2fb45855c3b0449e0ce2181612527419fd0282fa0abe7c7245eb09783        709
 eccd9897a5b90547ccf2a47cec4bc556978c6f9bb1d9809b8b78eac587c81d61        708
 7889d0611bd5ace640e85be85fcbe037aa98497b4e568981b96071ea48146bfd        706
 7d2026c4662303c0d1e5baadb208fb82c311ff92f6fe36fbd86354da780725f3        704
 b4876a977b068b0bc85610f7963676c10d4fb29adec91b2d69d10332e737fd2f        703
 ae11a9620b5ac2e23c5ae76aa6a3c441dfb19f52c724127570937ae765716eda        701
 01e15a45d5f57d18a3171546a3c198eb7beca000f7956526f327a1b772c7ba08        701
 8a0592c96b3f77f12919130564c15a07460b5166a4af2d212af915b4ab023ad5        700
 2fe9bb0975fbb0c8e0bb6da527a1af92f11446062365605736a54e84955a4a37        699
 0471b1e0203c2609e25fda179fa0e5fa4261ac317346e412e9893d79f08a5a29        698
 35c6570be53d819b2ffce57dcb0cc7500cf6af6b48b3894612e324df29603617        695
 73c6a747d756d3914942b5ae6d6507c134ffe66c87582942ce3a20f00cdcbf5a        695
 7db7f05013e9e067ee2bf9d288b93e657d1da965e6b6724910bc57d75d1c76ce        695
 486b675c3e96ffe9e0737cda7288aa4511676e7db97718bfa4ff14c5f57fc5e6        690
 e594d1ad6343c14e16cf7afc6abf3357cddd9ef0985ec788d873a210b1b3a175        690
 5e3962be50de420124e0970aaad946b318898125c09ef814b508533cab03de3f        689
 b261457ac583d2849153e1cf5b8c70fca45bc1bd92b4dc4945c6ed4f773c85b3        688
 bc25731a9e73beab42d44fab80e9b28bff6eafb29277e753825655f1a6b3f925        687
 f9db8772519d873be0928423806419b2763e3aa94743ad9467fae55eca9fdfc6        685
 6aba83caa52ab02761b1e1a507331e32e39f2d41202b5579d90413978f3fb536        684
 5d955f2624763b8e789d0eb1a0af7a8118b424afe5fcb528e91a6974c5418bed        684
 d73f609df2becc79cdfb5f18718d015e64a74c681f490fd5dea1036d9f3e009a        683
 0595fb8f7a055d0f0b6d3c4ba27c994d89ced784c7d8a7cc9fbcf23746bc5925        683
 7233982d86ccce3def19bd6d150975e71a4b0c85e187d61afb7a897e309a1171        683
 6eed9bacb3fce73528b8f983f433b05f12830b7556e9ef2be1c8815b7fc37247        682
 86a7c0bd114b65961e2829ea5b4e1acc033efeab3bd10380ddc17632d66c2282        681
f9090af049dfdbbedcbabb449337fd9e5790e4e792e052aa9a362feb535c0e9e
Total distance:
21.519000000000005
Home locaiton:
(-73.944016, 40.798355)
Most location:
(-73.94428, 40.79831)

f35e7343009f7c1c34b19abe25f3969f5a17782068fb0e4ba13928f3a2e45469
Total distance:
21.951000000000004
Home locaiton:
(-73.981415, 40.780582)
Most location:
(-73.98142, 40.780605)

087c00273c18759c9a83691bba0972149b7235d6d0c68d2d67fc306a7ac3e4bc
Total distance:
35.60699999999996
Home locaiton:
(-73.95577, 40.77905)
Most location:
(-73.95591, 40.779568)

5cd6d7ced3a0160d08a112e894d130a38a62cfd7eed7df87f7a69bbb636c6da3
Total distance:
20.862000000000002
Home locaiton:
(-73.936844, 40.804165000000005)
Most location:
(-73.95486, 40.80514)

b19238195a92e8930a1a7b729d4f580e9953b18c0de2682af74a54c6c4dd515d
Total distance:
24.275000000000006
Home locaiton:
(-73.96891, 40.7904)
Most location:
(-73.96863, 40.790596)

80ff716b34f380c3b5457db1409ae44c827375c685cfdfe9749c36a1036908e7
Total distance:
10.179000000000002
Home locaiton:
(-73.98846400000001, 40.75869)
Most location:
(-73.98865, 40.758484)

8c2621a338dd7a8ae204b0596a4a64557a3ea14f70cc915c1be97f2cb8bf3b89
Total distance:
4.694999999999994
Home locaiton:
(-73.98814, 40.721413)
Most location:
(-73.98731, 40.72185)

601907867cba3e384449d2d9dd21f09fb23b07a46187f3111c297c7c4dc34398
Total distance:
76.55500000000005
Home locaiton:
(-74.00014, 40.732665999999995)
Most location:
(-74.00816, 40.714962)

c0a3d6d6c8d2b703b923dcc5c3d1b912c855624d9a8c1072fd3c73e2aff051ed
Total distance:
210.19699999999975
Home locaiton:
(-73.981445, 40.766068)
Most location:
(-73.981445, 40.766068)

63e2706b83d0d8e38ab29bcc0946754e38d10fbc1d5559b06038fd61f2dcb5a2
Total distance:
246.84100000000004
Home locaiton:
(-73.99802, 40.75588)
Most location:
(-73.97561, 40.750923)

f4089b34366a31c6745a529c6cea184488aa7e0e097f3752ea5fb3bdf881db71
Total distance:
63.553999999999995
Home locaiton:
(-73.94573000000001, 40.82177)
Most location:
(-73.9446, 40.819373999999996)

4b82487916526c00dff245d2d157182eaa9cee6189daaef409efd43019dc4d2d
Total distance:
7.441000000000001
Home locaiton:
(-73.97606999999999, 40.72018)
Most location:
(-73.97606999999999, 40.72018)

1c613e326dd4c4e306987a8b5d07001535a4da35ad06837496e75b4fce04acce
Total distance:
22.081000000000003
Home locaiton:
(-74.00168599999999, 40.717403000000004)
Most location:
(-74.001274, 40.71777)

2c7689ac32132798486db4d93c90848d258c53cd35af161e048e2e933336d360
Total distance:
23.066999999999986
Home locaiton:
(-73.960365, 40.800373)
Most location:
(-73.941, 40.792103000000004)

ea3b6aac587ccf8c4bb015999fc6604f9c0325806639910c876796cecb9ac9ed
Total distance:
147.91200000000015
Home locaiton:
(-73.9544, 40.779083)
Most location:
(-73.94575999999999, 40.828133)

80723ce63a5ff66854334042f8f90a7de1ac89ebceb94e13563125e182e6ba24
Total distance:
54.27599999999998
Home locaiton:
(-73.97414, 40.746128000000006)
Most location:
(-73.97403, 40.78116)

03004ff5e72fae238ca63b180676e97a68517f9eb4bb56aeabb465f4ecbd7313
Total distance:
72.93499999999993
Home locaiton:
(-73.988556, 40.758396000000005)
Most location:
(-73.99296600000001, 40.743120000000005)

f454b9ca03ee5ff16e5a821ebb61a5c3adbdbf0b9eb37e3325967e3ddd6f87f3
Total distance:
115.94800000000002
Home locaiton:
(-73.99517, 40.753777)
Most location:
(-73.988556, 40.721333)

8e16a6f53efaeef6f37b909e8de672474f709a83d7df0c64c8c2b9912fbb9fc6
Total distance:
0.6020000000000004
Home locaiton:
(-73.99557, 40.72497)
Most location:
(-73.99561, 40.724968)

e926da376ad454fe20461c023d28e3dfdf2b888f7eab7dfde20cd89e41cd77c9
Total distance:
218.0840000000002
Home locaiton:
(-73.942825, 40.81908)
Most location:
(-73.94001999999999, 40.810513)

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

pandas 数据分析展示

In [ ]:


 
pandas 数据分析展示pandas 数据分析展示 yunfeiw0 发布了4 篇原创文章 · 获赞 0 · 访问量 570 私信 关注
上一篇:The 25 most recommended programming books of all-time.


下一篇:github仓库的初步使用