python的pandas库学习笔记

导入:

import pandas as pd

from pandas import Series,DataFrame

1、两个主要数据结构:Series和DataFrame

(1)Series是一种类似于一维数组的对象,由数据和标签组成;标签未传入则默认标签为0到N-1.

obj=Series([4,7,-5,3])

Out0 4

1 7

2 -5

3 3

obj.values=array([4,7,-5,3]);obj.index=Int64Index([0,1,2,3])

obj2=Series([4,7,-5,3],index=['d','b','a','c'])
obj2d 4

b 7

a -5

c 3

取值obj2['a']=-5;修改obj2['d']=6,则obj2[['c','a','d']]=

Outc 3

a -5

d 6

根据字典创建:sdata={'A':100,'B':200,'C':300};obj3=Series(sdata)(按键值有序排列)

obj3A 100

B 200

C 300

states=['B','C','D'];obj4=Series(sdata,index=states)

obj4B 200

C 300

D NaN(缺失值)

isnull和notnull函数用于检测缺失数据,pd.isnull(obj4)和pd.notnull(obj4)结果分别是:

OutB False True

C False True

D True False

算术运算中会自动对齐,obj3+obj4

OutA NaN

B 400

C 600

D NaN

对象本身和索引都有name属性;索引可以通过赋值方式修改。

(2)DataFrame是一个表格型数据结构,含有一组有序的列,每列可以是不同的值类型。

等长字典构建。data={'A':['a','b','c'],'B':[1,2,3],'C':[0.1,0.2,0.3]};frame=DataFrame(data)(有序排列ABC);指定顺序排列DataFrame(data,columns=['B','C','A']);指定索引frame2=DataFrame(data,columns=['B','C','A','D'],index=['one',two','three'])

Out  A B  C      B  C  A         B  C  A  D

0 a 1 0.1     1 0.1 a    one  1 0.1 a NaN

1 b 2 0.2     2 0.2 b    two  2 0.2 b NaN

2 c 3 0.3     3 0.3 c   three 3 0.3 c NaN

可以通过类似字典标记的方式或属性的方式,获取列为一个Series。frame2['A']或frame2.B;获取行用ix,frame2.ix['one'];列可以通过赋值方式修改,frame['D']=10或np.array(3.)。利用del删除列,如del frame2['D']。

嵌套字典构建,外层字典的键作为列,内层键作为行索引。

2、基本功能

(1)reindex创建一个适应新索引的新对象,根据新索引进行重排,某个索引值不存在,引入缺失值。fill_value填充空值,method=‘ffill'根据前一个值填充;‘bfill'后向填充。

(2)drop在指定轴上删除指定值的新对象。对于DataFrame,axis=0删除行,默认为行;axis=1删除列。

(3)利用标签的切片运算,末端是包含的。

3、算术运算和数据对齐

可以对不同索引的对象进行算术运算,相加的索引为索引的并集,不重叠的索引引入缺失值 。

上一篇:重新想象 Windows 8 Store Apps (29) - 图片处理


下一篇:audio video 控制播放和停止