1003: [ZJOI2006]物流运输
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 6331 Solved: 2610
[Submit][Status][Discuss]
Description
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转
停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种
因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是
修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本
尽可能地小。
Input
第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示
每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编
号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来
一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码
头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一
条从码头A到码头B的运输路线。
Output
包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。
Sample Input
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
Sample Output
32
//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32
//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32
首先看到题目会想到最短路。。。
设cost[i][j]表示从第i天到第j天的每天的最小花费,就是用spfa求一个最短路。
设f[i]表示前i天的最小总花费,则状态转移方程:f[i]=min{f[j]+cost[j+1][i]*(i-j)+k} (0<=j<i) 初始值为f[i]=cost[1][i]*i,求出f[n]就是答案
特别提醒,f数组要设为long long,而且在计算f[i]=cost[1][i]*i时也要转为long long
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<algorithm>
using namespace std;
struct node{int y,next,v;}e[];
long long n,m,k,p,d,len,Link[],vis[],check[],dis[],f[],q[],cost[][],flag[][];
inline int read()
{
int x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
void insert(int xx,int yy,int vv)
{
e[++len].next=Link[xx];
Link[xx]=len;
e[len].y=yy;
e[len].v=vv;
}
int spfa(int a,int b)
{
memset(vis,,sizeof(vis));
memset(dis,/,sizeof(dis));
memset(check,,sizeof(check));
int head=,tail=;
q[++tail]=; vis[tail]=; dis[tail]=;
for(int i=;i<=m;i++)
for(int j=a;j<=b;j++)
if(flag[i][j]) check[i]=;
while(++head<=tail)
{
int now=q[head];
for(int i=Link[now];i;i=e[i].next)
{
if(!check[e[i].y]&&dis[now]+e[i].v<dis[e[i].y])
{
dis[e[i].y]=dis[now]+e[i].v;
if(!vis[e[i].y])
{
q[++tail]=e[i].y;
vis[e[i].y]=;
}
}
}
vis[now]=;
}
return dis[m];
}
int main()
{
//freopen("cin.in","r",stdin);
//freopen("cout.out","w",stdout);
n=read(); m=read(); k=read(); p=read();
for(int i=;i<=p;i++)
{
int x=read(),y=read(),z=read();
insert(x,y,z); insert(y,x,z);
}
d=read();
for(int i=;i<=d;i++)
{
int x=read(),y=read(),z=read();
for(int j=y;j<=z;j++) flag[x][j]=;
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
cost[i][j]=spfa(i,j);
for(int i=;i<=n;i++)
{
f[i]=(long long)cost[][i]*i;
for(int j=;j<i;j++)
f[i]=min(f[i],f[j]+cost[j+][i]*(i-j)+k);
}
printf("%lld",f[n]);
return ;
}