JetsonNano安装Caffe

原文链接:https://github.com/BVLC/caffe/issues/2597

Hi,

 

Your GPU compute capacity is incorrect. Nano is sm=53, not sm=62.

Here is my installation steps for your reference:

 

1. Install dependencies

  1. sudo apt-get update
  2. sudo apt-get install software-properties-common
  3. sudo add-apt-repository universe
  4. sudo add-apt-repository multiverse

 

  1. sudo apt-get install libboost-dev libboost-all-dev
  2. sudo apt-get install libjpeg-turbo8-dev libjpeg8-dev libturbojpeg0-dev
  3. sudo apt-get install liblapack-dev liblapack3 libopenblas-base libopenblas-dev
  4. sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev libatlas-base-dev liblmdb-dev libblas-dev libatlas-base-dev libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler

 

 

2. Prepare source

  1. git clone https://github.com/NVIDIA/caffe.git $CAFFE_ROOT

 

>> Edit Makefile.config.example

  1. +++ USE_CUDNN := 1

 

  1. +++ OPENCV_VERSION := 3

 

  1. +++ WITH_PYTHON_LAYER := 1

 

  1. --- CUDA_ARCH := -gencode arch=compute_50,code=sm_50 \
  2. --- -gencode arch=compute_52,code=sm_52 \
  3. --- -gencode arch=compute_60,code=sm_60 \
  4. --- -gencode arch=compute_61,code=sm_61 \
  5. --- -gencode arch=compute_61,code=compute_61
  6. +++ CUDA_ARCH := -gencode arch=compute_53,code=sm_53 \
  7. +++ -gencode arch=compute_53,code=compute_53

 

 

3. Build

  1. cp Makefile.config.example Makefile.config
  2. make -j4
  3. make pycaffe
  4. export PYTHONPATH=$PWD/python:$PYTHONPATH

 

 

I can build caffe successfully with the steps above.

Thanks.

 

#10

Posted 04/24/2019 05:56 AM   

 

Issues:

 

Can't build with error ‘::gflags’ has not been declared 

https://github.com/BVLC/caffe/issues/2597

I also got this problem, and I installed gflags by myself before .

And I solved this problem :

in the file include/caffe/common.hpp

//#ifndef GFLAGS_GFLAGS_H_

namespace gflags = google;

//#endif // GFLAGS_GFLAGS_H_

comment ;

namespace gflags = google;

this code is important

 

 

上一篇:SSD的训练 Linux下


下一篇:Java file用法