HanLP Analysis for Elasticsearch

基于 HanLP 的 Elasticsearch 中文分词插件,核心功能:

兼容 ES 5.x-7.x;

内置词典,无需额外配置即可使用;

支持用户自定义词典;

支持远程词典热更新(待开发);

内置多种分词模式,适合不同场景;

拼音过滤器(待开发);

简繁体转换过滤器(待开发)。

版本

插件版本和 ES 版本一致,直接下载对应版本的插件进行安装即可。

·插件开发完成时,最新版本已经为 6.5.2 了,所以个人只对典型的版本进行了测试;

·5.X 在 5.0.0、5.5.0 版本进行了测试;

·6.X 在 6.0.0、6.3.0、6.4.1、6.5.1 版本进行了测试;

·7.X 在 7.0.0 版本进行了测试。

 

安装使用

下载编译

git clone 对应版本的代码,打开 pom.xml 文件,修改 <elasticsearch.version>6.5.1</elasticsearch.version> 为需要的 ES 版本;然后使用 mvn package 生产打包文件,最终文件在 target/release 文件夹下。

打包完成后,使用离线方式安装即可。

使用默认词典

·在线安装:.\elasticsearch-plugin install github.com/AnyListen/elasticsearch-analysis-hanlp/releases/download/vA.B.C/elasticsearch-analysis-hanlp-A.B.C.zip

·离线安装:.\elasticsearch-plugin install file:///FILE_PATH/elasticsearch-analysis-hanlp-A.B.C.zip

离线安装请把 FILE_PATH 更改为 zip 文件路径;A、B、C 对应的是 ES 版本号。

使用自定义词典

默认词典是精简版的词典,能够满足基本需求,但是无法使用感知机和 CRF 等基于模型的分词器。

HanLP 提供了更加完整的词典,请按需下载。

词典下载后,解压到任意目录,然后修改插件安装目录下的 hanlp.properties 文件,只需修改第一行

root=D:/JavaProjects/HanLP/

为 data 的父目录即可,比如 data 目录是 /Users/hankcs/Documents/data,那么 root=/Users/hankcs/Documents/。

使用自定义配置文件

如果你在其他地方使用了 HanLP,希望能够复用 hanlp.properties 文件,你只需要修改插件安装目录下的 plugin.properties 文件,将 configPath 配置为已有的 hanlp.properties 文件地址即可。

内置分词器

分析器(Analysis)

·hanlp_index:细粒度切分

·hanlp_smart:常规切分

·hanlp_nlp:命名实体识别

·hanlp_per:感知机分词

·hanlp_crf:CRF分词

·hanlp:自定义

分词器(Tokenizer)

·hanlp_index:细粒度切分

·hanlp_smart:常规切分

·hanlp_nlp:命名实体识别

·hanlp_per:感知机分词

·hanlp_crf:CRF分词

·hanlp:自定义

 

自定义分词器

插件有较为丰富的选项允许用户自定义分词器,下面是可用的配置项:

HanLP Analysis for Elasticsearch

案例展示:

# 创建自定义分词器

PUT my_index

{

"settings": {

"analysis": {

"analyzer": {

"my_analyzer": {

"type": "hanlp",

"algorithm": "viterbi",

"enableIndexMode": "true",

"enableCustomDictionary": "true",

"customDictionaryPath": "",

"enableCustomDictionaryForcing": "false",

"enableStopWord": "true",

"stopWordDictionaryPath": "",

"enableNumberQuantifierRecognize": "true",

"enableNameRecognize": "true",

"enableTranslatedNameRecognize": "true",

"enableJapaneseNameRecognize": "true",

"enableOrganizationRecognize": "true",

"enablePlaceRecognize": "true",

"enableTraditionalChineseMode": "false"

}

}

}

}

}

# 测试分词器

POST my_index/_analyze

{

"analyzer": "my_analyzer",

"text": "张惠妹在上海市举办演唱会啦"

}

分词速度(仅供参考)

借助 _analyze API(1核1G单线程),通过改变分词器类型,对 2W 字的文本进行分词,以下为从请求到返回的耗时:

HanLP Analysis for Elasticsearch

上一篇:[术语] CRUD 增删改查


下一篇:导出数据到EXL表格中