接着统计学习中knn算法实验(1)的内容
Problem:
- Explore the data before classification using summary statistics or visualization
- Pre-process the data (such as denoising, normalization, feature selection, …)
- Try other distance metrics or distance-based voting
- Try other dimensionality reduction methods
- How to set the k value, if not using cross validation? Verify your idea
- 在对数据分类之前使用对数据进行可视化处理
- 预处理数据(去噪,归一化,数据选择)
- 在knn算法中使用不同的距离计算方法
- 使用其他的降维算法
- 如何在不使用交叉验证的情况下设置k值
使用Parallel coordinates plot做数据可视化,首先对数据进行归一化处理,数据的动态范围控制在[0,1]。注意归一化的处理针对的是每一个fearture。
通过对图的仔细观察,我们挑选出重叠度比较低的feature来进行fearture selection,feature selection实际上是对数据挑选出更易区分的类型作为下一步分类算法的数据。我们挑选出feature序号为(1)、(2)、(5)、(6)、(7)、(10)的feature。个人认为,feature selection是一种简单而粗暴的降维和去噪的操作,但是可能效果会很好。
根据上一步的操作,从Parallel coordinates上可以看出,序号为(1)、(2)、(5)、(6)、(7)、(10)这几个feature比较适合作为classify的feature。我们选取以上几个feature作knn,得到的结果如下:
当K=1 的时候,Accuracy达到了85.38%,并且相比于简单的使用knn或者PCA+knn的方式,Normalization、Featrure Selection的方法使得准确率大大提升。我们也可以使用不同的feature搭配,通过实验得到更好的结果。
MaxAccuracy= 0.8834 when k=17 (Normalization+FeartureSelection+KNN)
Denoising的代码如下:
function[DNData]=DataDenoising(InputData,KillRange)
DNData=InputData;
%MedianData=median(DNData);
for i=2:size(InputData,2)
[temp,DNIndex]=sort(DNData(:,i));
DNData=DNData(DNIndex(1+KillRange:end-KillRange),:);
end
采用LLE作为降维的手段,通过和以上的几种方案作对比,如下:
MaxAccuracy= 0.9376 when K=23 (LLE dimensionality reduction to 2)
关于LLE算法,参见这篇论文
- Nonlinear dimensionality reduction by locally linear embedding.Sam Roweis & Lawrence Saul.Science, v.290 no.5500 , Dec.22, 2000. pp.2323--2326.
源代码:
StatLearnProj.m
clear;
data=load('wine.data.txt');
%calc 5-folder knn
Accuracy=[];
for i=1:5
Test=data(i:5:end,:);
TestData=Test(:,2:end);
TestLabel=Test(:,1);
Trainning=setdiff(data,Test,'rows');
TrainningData=Trainning(:,2:end);
TrainningLabel=Trainning(:,1);
Accuracy=cat(1,Accuracy,CalcAccuracy(TestData,TestLabel,TrainningData,TrainningLabel));
end
AccuracyKNN=mean(Accuracy,1); %calc PCA
Accuracy=[];
%PCA
[Coeff,Score,Latent]=princomp(data(:,2:end));
dataPCA=[data(:,1),Score(:,1:6)];
Latent
for i=1:5
Test=dataPCA(i:5:end,:);
TestData=Test(:,2:end);
TestLabel=Test(:,1);
Trainning=setdiff(dataPCA,Test,'rows');
TrainningData=Trainning(:,2:end);
TrainningLabel=Trainning(:,1);
Accuracy=cat(1,Accuracy,CalcAccuracy(TestData,TestLabel,TrainningData,TrainningLabel));
end
AccuracyPCA=mean(Accuracy,1);
BarData=[AccuracyKNN;AccuracyPCA];
bar(1:2:51,BarData'); [D,I]=sort(AccuracyKNN,'descend');
D(1)
I(1)
[D,I]=sort(AccuracyPCA,'descend');
D(1)
I(1) %pre-processing data
%Normalization
labs1={'1)Alcohol','(2)Malic acid','3)Ash','4)Alcalinity of ash'};
labs2={'5)Magnesium','6)Total phenols','7)Flavanoids','8)Nonflavanoid phenols'};
labs3={'9)Proanthocyanins','10)Color intensity','11)Hue','12)OD280/OD315','13)Proline'};
uniData=[];
for i=2:size(data,2)
uniData=cat(2,uniData,(data(:,i)-min(data(:,i)))/(max(data(:,i))-min(data(:,i))));
end
figure();
parallelcoords(uniData(:,1:4),'group',data(:,1),'labels',labs1);
figure();
parallelcoords(uniData(:,5:8),'group',data(:,1),'labels',labs2);
figure();
parallelcoords(uniData(:,9:13),'group',data(:,1),'labels',labs3); %denoising %Normalization && Feature Selection
uniData=[data(:,1),uniData];
%Normalization all feature for i=1:5
Test=uniData(i:5:end,:);
TestData=Test(:,2:end);
TestLabel=Test(:,1);
Trainning=setdiff(uniData,Test,'rows');
TrainningData=Trainning(:,2:end);
TrainningLabel=Trainning(:,1);
Accuracy=cat(1,Accuracy,CalcAccuracy(TestData,TestLabel,TrainningData,TrainningLabel));
end
AccuracyNorm=mean(Accuracy,1); %KNN PCA Normalization
BarData=[AccuracyKNN;AccuracyPCA;AccuracyNorm];
bar(1:2:51,BarData'); %Normalization& FS 1 2 5 6 7 10 we select 1 2 5 6 7 10 feature
FSData=uniData(:,[1 2 3 6 7 8 11]);
size(FSData)
for i=1:5
Test=FSData(i:5:end,:);
Trainning=setdiff(FSData,Test,'rows');
TestData=Test(:,2:end);
TestLabel=Test(:,1);
TrainningData=Trainning(:,2:end);
TrainningLabel=Trainning(:,1);
Accuracy=cat(1,Accuracy,CalcAccuracy(TestData,TestLabel,TrainningData,TrainningLabel));
end
AccuracyNormFS1=mean(Accuracy,1); %Normalization& FS 1 6 7
FSData=uniData(:,[1 2 7 8]);
for i=1:5
Test=FSData(i:5:end,:);
Trainning=setdiff(FSData,Test,'rows');
TestData=Test(:,2:end);
TestLabel=Test(:,1);
TrainningData=Trainning(:,2:end);
TrainningLabel=Trainning(:,1);
Accuracy=cat(1,Accuracy,CalcAccuracy(TestData,TestLabel,TrainningData,TrainningLabel));
end
AccuracyNormFS2=mean(Accuracy,1);
figure();
BarData=[AccuracyNorm;AccuracyNormFS1;AccuracyNormFS2];
bar(1:2:51,BarData'); [D,I]=sort(AccuracyNorm,'descend');
D(1)
I(1)
[D,I]=sort(AccuracyNormFS1,'descend');
D(1)
I(1)
[D,I]=sort(AccuracyNormFS2,'descend');
D(1)
I(1)
%denoiding
%Normalization& FS 1 6 7
FSData=uniData(:,[1 2 7 8]);
for i=1:5
Test=FSData(i:5:end,:);
Trainning=setdiff(FSData,Test,'rows');
Trainning=DataDenoising(Trainning,2);
TestData=Test(:,2:end);
TestLabel=Test(:,1);
TrainningData=Trainning(:,2:end);
TrainningLabel=Trainning(:,1);
Accuracy=cat(1,Accuracy,CalcAccuracy(TestData,TestLabel,TrainningData,TrainningLabel));
end
AccuracyNormFSDN=mean(Accuracy,1);
figure();
hold on
plot(1:2:51,AccuracyNormFSDN);
plot(1:2:51,AccuracyNormFS2,'r'); %other distance metrics Dist='cityblock';
for i=1:5
Test=uniData(i:5:end,:);
TestData=Test(:,2:end);
TestLabel=Test(:,1);
Trainning=setdiff(uniData,Test,'rows');
TrainningData=Trainning(:,2:end);
TrainningLabel=Trainning(:,1);
Accuracy=cat(1,Accuracy,CalcAccuracyPlus(TestData,TestLabel,TrainningData,TrainningLabel,Dist));
end
AccuracyNormCity=mean(Accuracy,1); BarData=[AccuracyNorm;AccuracyNormCity];
figure();
bar(1:2:51,BarData'); [D,I]=sort(AccuracyNormCity,'descend');
D(1)
I(1) %denoising
FSData=uniData(:,[1 2 7 8]);
Dist='cityblock';
for i=1:5
Test=FSData(i:5:end,:);
TestData=Test(:,2:end);
TestLabel=Test(:,1);
Trainning=setdiff(FSData,Test,'rows');
Trainning=DataDenoising(Trainning,3);
TrainningData=Trainning(:,2:end);
TrainningLabel=Trainning(:,1);
Accuracy=cat(1,Accuracy,CalcAccuracyPlus(TestData,TestLabel,TrainningData,TrainningLabel,Dist));
end
AccuracyNormCityDN=mean(Accuracy,1);
figure();
hold on
plot(1:2:51,AccuracyNormCityDN);
plot(1:2:51,AccuracyNormCity,'r'); %call lle data=load('wine.data.txt');
uniData=[];
for i=2:size(data,2)
uniData=cat(2,uniData,(data(:,i)-min(data(:,i)))/(max(data(:,i))-min(data(:,i))));
end
uniData=[data(:,1),uniData];
LLEData=lle(uniData(:,2:end)',5,2);
%size(LLEData)
LLEData=LLEData';
LLEData=[data(:,1),LLEData]; Accuracy=[];
for i=1:5
Test=LLEData(i:5:end,:);
TestData=Test(:,2:end);
TestLabel=Test(:,1);
Trainning=setdiff(LLEData,Test,'rows');
Trainning=DataDenoising(Trainning,2);
TrainningData=Trainning(:,2:end);
TrainningLabel=Trainning(:,1);
Accuracy=cat(1,Accuracy,CalcAccuracyPlus(TestData,TestLabel,TrainningData,TrainningLabel,'cityblock'));
end
AccuracyLLE=mean(Accuracy,1);
[D,I]=sort(AccuracyLLE,'descend');
D(1)
I(1) BarData=[AccuracyNorm;AccuracyNormFS2;AccuracyNormFSDN;AccuracyLLE];
figure();
bar(1:2:51,BarData'); save('ProcessingData.mat');
CalcAccuracy.m
function Accuracy=CalcAccuracy(TestData,TestLabel,TrainningData,TrainningLabel)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%calculate the accuracy of classify
%TestData:M*D matrix D stand for dimension,M is sample
%TrainningData:T*D matrix
%TestLabel:Label of TestData
%TrainningLabel:Label of Trainning Data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CompareResult=[];
for k=1:2:51
ClassResult=knnclassify(TestData,TrainningData,TrainningLabel,k);
CompareResult=cat(2,CompareResult,(ClassResult==TestLabel));
end
SumCompareResult=sum(CompareResult,1);
Accuracy=SumCompareResult/length(CompareResult(:,1));
CalcAccuracyPlus.m
function Accuracy=CalcAccuracyPlus(TestData,TestLabel,TrainningData,TrainningLabel,Dist)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%just as CalcAccuracy,but add distance metrics
%calculate the accuracy of classify
%TestData:M*D matrix D stand for dimension,M is sample
%TrainningData:T*D matrix
%TestLabel:Label of TestData
%TrainningLabel:Label of Trainning Data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CompareResult=[];
for k=1:2:51
ClassResult=knnclassify(TestData,TrainningData,TrainningLabel,k,Dist);
CompareResult=cat(2,CompareResult,(ClassResult==TestLabel));
end
SumCompareResult=sum(CompareResult,1);
Accuracy=SumCompareResult/length(CompareResult(:,1));