先采用一个简单的输入文本做测试
[root@cq01-forum-rstree01.cq01.baidu.com rnnlm]# pwd
/home/users/chenghuige/rsc/app/search/sep/anti-spam/rnnlm
[root@cq01-forum-rstree01.cq01.baidu.com rnnlm]# cat shijiebei2.txt
喜欢 观看 巴西 足球 世界杯
喜欢 观看 巴西 足球
喜欢 观看 巴西 足球
喜欢 观看 巴西
喜欢 观看 巴西
喜欢 观看
喜欢
喜欢
[root@cq01-forum-rstree01.cq01.baidu.com rnnlm]# gdb ./rnnlm
(gdb) b 157
Breakpoint 1 at 0x40e0a3: file rnnlm.cc, line 157.
(gdb) r -rnnlm model -train shijiebei2.txt -valid shijiebei2.txt -hidden 5- -direct-order 3 -direct 200 -bptt 4 -bptt-block 10 -threads 1
Starting program: /home/users/chenghuige/rsc/app/search/sep/anti-spam/rnnlm/rnnlm -rnnlm model -train shijiebei.txt -valid shijiebei.txt -hidden 5- -direct-order 3 -direct 200 -bptt 4 -bptt-block 10 -threads 1
Read the vocabulary: 6 words
Restoring existing nnet
Constructing RNN: layer_size=5, layer_type=sigmoid, layer_count=1, maxent_hash_size=199999998, maxent_order=3, vocab_size=6, use_nce=0
Contructed HS: arity=2, height=4
Breakpoint 1, EvaluateLM (nnet=0xf6e300, filename="shijiebei.txt", print_logprobs=false, accurate_nce=true) at rnnlm.cc:157
157 IRecUpdater* rec_layer_updater = nnet->rec_layer->CreateUpdater();
class IRecUpdater {
public:
IRecUpdater(int layer_size)
: size_(layer_size)
, input_(MAX_SENTENCE_WORDS, size_)
, input_g_(MAX_SENTENCE_WORDS, size_)
, output_(MAX_SENTENCE_WORDS, size_)
, output_g_(MAX_SENTENCE_WORDS, size_) {}
virtual ~IRecUpdater() {}
RowMatrix& GetInputMatrix() { return input_; }
RowMatrix& GetInputGradMatrix() { return input_g_; }
RowMatrix& GetOutputMatrix() { return output_; }
RowMatrix& GetOutputGradMatrix() { return output_g_; }
void ForwardSequence(int steps) { return ForwardSubSequence(0, steps); }
void ForwardStep(int step_idx) { return ForwardSubSequence(step_idx, 1); }
virtual void BackwardSequence(int steps, uint32_t truncation_seed, int bptt_period, int bptt) = 0;
virtual void UpdateWeights(int steps, Real lrate, Real l2reg, Real rmsprop, Real gradient_clipping) = 0;
virtual void ForwardSubSequence(int start, int steps) = 0;
// Returns list of pointers on updates
// The order must much one in corresponding methods in weight class
virtual std::vector<WeightMatrixUpdater<RowMatrix>*> GetMatrices() = 0;
virtual std::vector<WeightMatrixUpdater<RowVector>*> GetVectors() = 0;
protected:
const int size_;
RowMatrix input_, input_g_;
RowMatrix output_, output_g_;
};
为了方便观察
我把 MAX_SENTENCE_WORDS设置为10
(gdb) p *rec_layer_updater
$2 = {_vptr.IRecUpdater = 0x7076b0 <vtable for SimpleRecurrentLayer::Updater+16>, size_ = 5,
input_ = { m_storage = {m_data = 0xf7e1a0, m_rows = 10,
m_cols = 5}}, <No data fields>},
所以对应input_,input_g_,output_,output_g_
4个数组都是 (MAX_SENTENCE_WORDS, hidden_size)
整个EvaluateLM的框架流程是这样的(不考虑nce,及一些边界或者特殊情况)
Real logprob_sum = 0;
uint64_t n_words = 0
while (reader.Read()) {
//获取当前句子的
对应查找Vacabulary词典后的数字编号得到一个数组
const WordIndex* sen = reader.sentence();
int seq_length = reader.sentence_length();
Real sen_logprob = 0.0;
//对应该句子前向计算
PropagateForward(nnet, sen, seq_length, rec_layer_updater);
//通过output层
算出对应该句子
当前的log(p)
const Real logprob = nnet->softmax_layer->CalculateLog10Probability(
sen[target], ngram_hashes, maxent_present, kHSMaxentPrunning,
output.row(target - 1).data(), &nnet->maxent_layer);
sen_logprob -= logprob;
n_words += seq_length;
logprob_sum += sen_logprob;
}
Real entropy = logprob_sum / log10(2) / n_words;
return entropy
恩
这里用的是交叉熵,参考之前介绍语言模型的评估,和PPL的关系就是一个2^的关系 PPL = 2^cross_entropy
- 首先看下句子的索引编号数组是咋样的
sen_[0] = 0 //首先添加了<s>
然后读取的时候
以 </s>对应读到0 作为结束
I1110 11:45:06.033421 3878 words.cc:327] buffer -- [喜欢] *wid -- [1]
I1110 11:45:06.033535 3878 words.cc:327] buffer -- [观看] *wid -- [2]
I1110 11:45:06.033542 3878 words.cc:327] buffer -- [巴西] *wid -- [3]
I1110 11:45:06.033548 3878 words.cc:327] buffer -- [足球] *wid -- [4]
I1110 11:45:06.033555 3878 words.cc:327] buffer -- [世界杯] *wid -- [5]
I1110 11:45:06.033562 3878 words.cc:327] buffer -- [</s>] *wid -- [0]
I1110 11:45:06.033573 3878 rnnlm.cc:189] senVec --- 6
I1110 11:45:06.033579 3878 rnnlm.cc:189] 0 0
I1110 11:45:06.033587 3878 rnnlm.cc:189] 1 1
I1110 11:45:06.033592 3878 rnnlm.cc:189] 2 2
I1110 11:45:06.033597 3878 rnnlm.cc:189] 3 3
I1110 11:45:06.033602 3878 rnnlm.cc:189] 4 4
I1110 11:45:06.033607 3878 rnnlm.cc:189] 5 5
I1110 11:45:06.036772 3878 words.cc:327] buffer -- [喜欢] *wid -- [1]
I1110 11:45:06.036780 3878 words.cc:327] buffer -- [观看] *wid -- [2]
I1110 11:45:06.036787 3878 words.cc:327] buffer -- [巴西] *wid -- [3]
I1110 11:45:06.036792 3878 words.cc:327] buffer -- [足球] *wid -- [4]
I1110 11:45:06.036798 3878 words.cc:327] buffer -- [</s>] *wid -- [0]
I1110 11:45:06.036808 3878 rnnlm.cc:189] senVec --- 5
I1110 11:45:06.036813 3878 rnnlm.cc:189] 0 0
I1110 11:45:06.036818 3878 rnnlm.cc:189] 1 1
I1110 11:45:06.036823 3878 rnnlm.cc:189] 2 2
I1110 11:45:06.036828 3878 rnnlm.cc:189] 3 3
I1110 11:45:06.036834 3878 rnnlm.cc:189] 4 4
I1110 11:45:06.036772 3878 words.cc:327] buffer -- [喜欢] *wid -- [1]
I1110 11:45:06.036780 3878 words.cc:327] buffer -- [观看] *wid -- [2]
I1110 11:45:06.036787 3878 words.cc:327] buffer -- [巴西] *wid -- [3]
I1110 11:45:06.036792 3878 words.cc:327] buffer -- [足球] *wid -- [4]
I1110 11:45:06.036798 3878 words.cc:327] buffer -- [</s>] *wid -- [0]
I1110 11:45:06.036808 3878 rnnlm.cc:189] senVec --- 5
I1110 11:45:06.036813 3878 rnnlm.cc:189] 0 0
I1110 11:45:06.036818 3878 rnnlm.cc:189] 1 1
I1110 11:45:06.036823 3878 rnnlm.cc:189] 2 2
I1110 11:45:06.036828 3878 rnnlm.cc:189] 3 3
I1110 11:45:06.036834 3878 rnnlm.cc:189] 4 4
I1110 11:45:06.041893 3878 words.cc:327] buffer -- [喜欢] *wid -- [1]
I1110 11:45:06.041901 3878 words.cc:327] buffer -- [观看] *wid -- [2]
I1110 11:45:06.041908 3878 words.cc:327] buffer -- [巴西] *wid -- [3]
I1110 11:45:06.041913 3878 words.cc:327] buffer -- [</s>] *wid -- [0]
I1110 11:45:06.041921 3878 rnnlm.cc:189] senVec --- 4
I1110 11:45:06.041926 3878 rnnlm.cc:189] 0 0
I1110 11:45:06.041931 3878 rnnlm.cc:189] 1 1
I1110 11:45:06.041936 3878 rnnlm.cc:189] 2 2
I1110 11:45:06.041941 3878 rnnlm.cc:189] 3 3
… 大概这个样子
,看一下对第一个句子的处理
喜欢 观看 巴西 足球 世界杯
I1110 11:45:06.033421 3878 words.cc:327] buffer -- [喜欢] *wid -- [1]
I1110 11:45:06.033535 3878 words.cc:327] buffer -- [观看] *wid -- [2]
I1110 11:45:06.033542 3878 words.cc:327] buffer -- [巴西] *wid -- [3]
I1110 11:45:06.033548 3878 words.cc:327] buffer -- [足球] *wid -- [4]
I1110 11:45:06.033555 3878 words.cc:327] buffer -- [世界杯] *wid -- [5]
I1110 11:45:06.033562 3878 words.cc:327] buffer -- [</s>] *wid -- [0]
I1110 11:45:06.033573 3878 rnnlm.cc:189] senVec --- 6
I1110 11:45:06.033579 3878 rnnlm.cc:189] 0 0
I1110 11:45:06.033587 3878 rnnlm.cc:189] 1 1
I1110 11:45:06.033592 3878 rnnlm.cc:189] 2 2
I1110 11:45:06.033597 3878 rnnlm.cc:189] 3 3
I1110 11:45:06.033602 3878 rnnlm.cc:189] 4 4
I1110 11:45:06.033607 3878 rnnlm.cc:189] 5 5
这里提一下rnnlm的计算思路,参考Mikolov的<<Statistical Language Models Based on Neural Net-Works>>
参考图3.1 这里输入w(t)可以看成一个 one-hot的vector,也就是长度为Vacabulary的大小|V|,每个词对应一个位置为1 其余位置为0,本质就是一个词编号作用。
图3.2是一个整体结构图,注意不同t step对应的U,W是相同的
f对应隐层的计算, f可以有多种非线性映射选择,这里简单的可以采用sigmoid
g对应输出层,softmax, softmax意味着概率值之和累加为1
公式
这里 W 对应 H*H
U对应 H*V
U其实对应embedding矩阵,也就是每个词汇对应的一个长度为hidden size的词向量 U (V*H) wU 1 * V V * H -> 1 * H
sW 1 * H H * H -> 1 * H
累加结果
然后softmax输出即可
其实wU 就是简单对应每个单词通过其编号index选取embedding矩阵中词向量的一行即可
前向传播计算对应上面所说的过程
inline void PropagateForward(NNet* nnet, const WordIndex* sen, int sen_length, IRecUpdater* layer) {
RowMatrix& input = layer->GetInputMatrix();
for (int i = 0; i < sen_length; ++i) {
input.row(i) = nnet->embeddings.row(sen[i]); //对应上面提到的wU也就是选取embedding中词向量的一行
}
layer->ForwardSequence(sen_length);
}
看一下ForwardSequence
void SimpleRecurrentLayer::Updater::ForwardSubSequence(int start, int steps) {
output_.middleRows(start, steps) = input_.middleRows(start, steps);
if (use_input_weights_) {
output_.middleRows(start, steps) *= syn_in_.W().transpose();
}
for (int step = start; step < start + steps; ++step) {
if (step != 0) {
output_.row(step).noalias() += output_.row(step - 1) * syn_rec_.W().transpose(); //对应 wU + sW
}
activation_->Forward(output_.row(step).data(), output_.cols()); //对应隐层的非线性f计算
}
}
struct SigmoidActivation : public IActivation {
void Forward(Real* hidden, int size) {
Pval(size);
for (int i = 0; i < size; i++) {
hidden[i] = exp(hidden[i]) / (1 + exp(hidden[i]));
}
}
然后看下EvaluateLM大框架中的
CalculateLog10Probability
const Real logprob = nnet->softmax_layer->CalculateLog10Probability(
sen[target], ngram_hashes, maxent_present, kHSMaxentPrunning,
output.row(target - 1).data(), &nnet->maxent_layer);
看使用HSTree方式的,这里先略过maxent部分
关于
hierarchical softmax 参考
http://www.tuicool.com/articles/7jQbQvr
// see the comment in the header
Real HSTree::CalculateLog10Probability(
WordIndex target_word,
const uint64_t* feature_hashes, int maxent_order,
bool dynamic_maxent_prunning,
const Real* hidden, const MaxEnt* maxent) const {
double softmax_state[ARITY];
//一般使用二叉huffman 也就是softmax_state[2]
Real logprob = 0.;
//从root开始遍历到叶子节点过程(不包括叶子节点)中的每个节点
for (int depth = 0; depth < tree_->GetPathLength(target_word) - 1; depth++) {
int node = tree_->GetPathToLeaf(target_word)[depth];
PropagateNodeForward(
this, node, hidden,
feature_hashes, maxent_order, maxent,
softmax_state);
//获取分支0 or 1
const int selected_branch = tree_->GetBranchPathToLead(target_word)[depth];
logprob += log10(softmax_state[selected_branch]); //从root到叶子内部节点预测的累加
这里再取了log
}
return logprob;
}
这里看下
PropagateNodeForward
inline void PropagateNodeForward(
const HSTree* hs, int node, const Real* hidden,
const uint64_t* feature_hashes, int maxent_order, const MaxEnt* maxent,
double* state) {
Real tmp[ARITY];
//(gdb) p tmp[0]
//$8 = -nan(0x7fcfc0)
//(gdb) p tmp[1]
//$9 = 4.59163468e-41
CalculateNodeChildrenScores(hs, node, hidden, feature_hashes, maxent_order, maxent, tmp);
//(gdb) p tmp[0]
//$10 = 3.87721157
//(gdb) p tmp[1]
//$11 = 4.59163468e-41
double max_score = 0;
state[ARITY - 1] = 1.;
double f = state[ARITY - 1];
for (int i = 0; i < ARITY - 1; ++i) {
state[i] = exp(tmp[i] - max_score);
f += state[i];
}
for (int i = 0; i < ARITY; ++i) {
state[i] /= f;
}
F = 1 + exp^tmp
Result = exp^temp / 1 + exp^tmp 刚好是softmax方式
}
inline void CalculateNodeChildrenScores(
const HSTree* hs, int node, const Real* hidden,
const uint64_t* feature_hashes, int maxent_order, const MaxEnt* maxent,
Real* branch_scores) {
for (int branch = 0; branch < ARITY - 1; ++branch) {
branch_scores[branch] = 0;
int child_offset = hs->tree_->GetChildOffset(node, branch); //2叉不需要考虑branch 就是每个内部节点对应的索引
const Real* sm_embedding = hs->weights_.row(child_offset).data();
for (int i = 0; i < hs->layer_size; ++i) {
branch_scores[branch] += hidden[i] * sm_embedding[i];
//binary soft max
}
}
}
(gdb) p hs->weights_
$16 = {<Eigen::m_storage = {m_data = 0xf6e680, m_rows = 6,
m_cols = 5}}, <No data fields>}
hs->weights_ (word_num, hidden_size)
但是这里注意其实都是对应内部节点的
内部节点的数目 = leafNum - 1
默认的2叉huffman其实就不用考虑branch了
必然是0,
也就是其实是对应每个内部节点
一组权重参数数据