INTERSECT交集运算

  INTERSECT交集是由既属于集合A,又属于集合B的所有元素组成的集合,如示意图1。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdUAAAFqCAIAAADDR1cAAAAWOElEQVR4nO3a0ZncKgyG4WkwNU0DqSBlnAZ9LjbPPM7YYCEJBOJ7r5Jdg0GW/2UneR0AgAiv6AUAwKbIXwCIQf4CQAzyFwBikL8AEIP8BYAY5C8AxCB/ASBGQ/6+AAB3yF8AiEH+AkCMcfmruxMAJEP+AkAM8hcAYpC/ABCD/AWAGOQvAMQgfwEgBvkLADHIXwCIQf4CQAzyFwBikL8AEIP8BRy8LqJXhAWQv4DVtbFpdUiQv/jGUe6qUofSt0qhTG3xQf7inu5hzf+IffdVn+3xXDx/udAV+Yt75O95yJ8/f24Hkr+wIH9xr5Qdv379uv31+XVxHfv1rc9fhXM+Tnj7XeEKj3KLvvrkb30sdlBqOenwYXfCYJKEqudL6YulWDzK8SSZ4favwhXe7u78dd/85V3AD/IX90px8+vXr8o19dS+jZ6vOetTPU742GOKJnTPX/VKkAz5i3vu+Vu50W3+Hv/mrHBC9/yt/OR4nO3xet6IzZG/uDdD/pZmGJ+/pbHkLyzIX9zrl7/Xvz5+/vA4Q+mvTYl526LkL/ohf/HtdXH9+vWv1+GVOes3qgxRfLeywcevf77y+/fv2zlLt7j97nW/lbHYgbENyF8AUCJ/ASAG+QsAMchfAIhB/gJADPIXAGKQvwAQg/wFgBjkLwDEIH8BIAb5CwAxyF8AiEH+AkAM8hcAYpC/ABCD/AWAGOQvAMQgfwEgBvkLADHIXwCIQf4CQAzyFwBikL8AEIP8BYAY5C8AxCB/ASAG+QsAMchfAIhB/gJADPIXAGKQvwAQg/wFgBjkLwDEIH8BIAb5CwAxyF8AiEH+AkAM8hcAYpC/ABCD/AWAGOQvnL20ohc+EXUNKeNayF8oWTKCNPmgjDszPiDydyNjkqIuugZW0fX7K7oM+Mv4RMjf5Ea+2FlDpHVflHEfxqdA/iY0z6s7z0pazbbyqRaDD2Plyd9U5n8/l17eDCv8sco60zMWnPzNYMVXcao1T7WYVksvfnXk777SvHWBG0lTwyPXXlZB/u4o62s2bF+5oyr37qZC/u5lk5eq3za3CqatNhuC/N3Fhi+S75Y3LODHznvvivzNj5fHuH0K+IM6uCN/M+NtOVNUg8S5oiaOyN+ceENKhJUhZeqojwvyNxveCol6laihHIWyIH9TITiaXGtFARUomhr5mwTvgM61bhRQhwIqkL8Z0PdGZIcXytiE/F0bwWHE+dcdlZQjfxdGlxtdC0hJvVBJCfJ3VfS3UamAHN+8UMZH5O96aGsjSQEpshcqWUH+LoZuNpIXkFJ7oZIl5O9K6GOj1gJScC9U8hb5uwza10hYwPf7rRuIR1TyC/m7BhrXSB6+PyrDeQQWVPKM/J0d/WokL2ApfFvnQR2V/CB/p0anGnmFb+tsqKOSP8jfedGjRr7h2zon6qjkQf5Oi+40EhbwfeI7MyQ2ryT5OyPecKPWY688fFtvgUc7V5L8nc7O7ehCXkBd8ipuhLptK0n+zoWTr5H95NuUyDwsL3tWkvydy55d6EVSvfe/St9V3JFHZrRhJcnfiWzYf44eq1dP3qM9fIX3hdxuxSR/Z7Fb5/l6PIcKk1f3cTDPztFWxSR/p7BVz/VQKqD8zMu/xc1jn0qSv/F4dY0k4Xsd5ZW8j8tAq30qSf4G26fVOrkWcNiZV7IY6GxSSfI3GGWxMIZv1yX1mHwrO0Qw+Rtphw7r6lw9SbDqkrdpFM/UUfpikr9h0vdWb03hq/7MQTGQJ+sodyXJ3xi8okaf6jUde7uefG+Xx/M1yl1J8jcG1bDQhW/rXYwfE+cOjpESV5L8DZC4n8b4yt/SZbrPHFpHla7hKTvKWknydzReS6Pr4ff2MnvyCsO3ciXP2lHKSpK/o1EHi6/kvQ0+RfIetv8a8bhgHrddyh9m5O9QKXtopHnCV3gjnrijfJUkf8fhVTSSf+bQNG2/8P3Bc/eSr5Lk7zhUwOKndI7h+/6XYpRwyMGj95MsgsnfQZL1zXj1w29rLNrDV5e/PH27TJUkfwfZfPtG9fxSx2jTGnSjPmgAL5l+mJG/I2TqmBAu4as+vZ6Ht446owe8pKkk+TvCznu3K/30agpTS/haUvuMH8OOclSS/O1u2417cQzf1lsbj8xXNIOXHJUkf7vbduMurmdG9bG39daKsY/X0wyOEhST/O1rz107Cg/fposlQ2gJLwkqSf72teeuvZQOv/VRlg8NKmNLE7bejpZwtHoxyd+ONtyyL0UBdeH7vnN7QWmsfIUHjeFn9UqSvx1tuGVH18Nvne7MW4/dr2sqM8jveNAYrpYuJvnbS2t84Iu8eq1n3sfTbuliy02/0Btelq4k+dvLbvv1Jf/p1RqC8uQ9/D7zvaI9vCx90CF/u1i6J2bQGr6SOdVJXfqWZJISOsTRupUkf7vYarM9SAooDFPdWfUxfEtTyW9Bk3hZt5LkbxdbbdadV/g2fdRwO0p+X8WNaBJHixaT/PW3z047eSxga/jKb/14tr1+V5fyP2gVL4tWkvz1t89Oe3id3F4gPIGqk1cevo/3elwGreLlsW3mRP7622enPVSqVwq72+QdGb66OY9lU2NOK1aS/HW2yTb7uS1gJVh1gXs7g/wCxZASGsbLipUkf51tss1Obs+DtwmrPuqe6c6w8vAlf0da8ZcJ8tfTih0wlUr4ni+zh+/jDJULHm/atCp6xtFylSR/Pe2wx65K+Xu+xnjmPWwf3coPv/L10DZelqsk+etphz12VS+g/dh72AK0R/getI2f5SpJ/nraYY/9VKrnkrzHlOF70Dau1iom+evmdRK9liWVquebvMbwfRyuWx6d42WtSpK/btJvsLfbAtqT9/AL38dbqFdI83hZq5Lkr5v0G+ztq4Djj73G8CV/Z7DWr6Hkr5v0G+yqEr66XHNM3scFGMP3oHlcLVRM8tdH7t0NcJu/uqmE2V25Rp7+j5fJN0ILeVmokuSvj9y7G8Alfx9z831Rv8Zyr6PxcwlayMtClSR/feTe3QDG/G1KQ0n4ym/3eI1wC7SQl4UqSf76yL27AdT5K0new/uf0eQZLb8LLeTldRK9lgfkr4/cu+vtNnybDqHCM69ktsfVWmarjKWFHK1STPLXR+7d9XauniJ8Hy/wCl/jbI9j6SIvq1SS/HWQeGtjXPO3cnFr8j7evVNGK4bTSF5WqST56yDx1sb4FLASUsLzbI/kPWwHZPldaCQvq1SS/HWQeGtjfOXv9QJJ8h4tn+EePcNXd5eDRvKzSiXJXweJtzZG/fBrOXs+Xux1peXY+0EjeVmlkuSvg8RbG6B++PU9orZe3HrldSD5G2WJYpK/DhJvbYBK9dYK38+VrbH7QSM5WqKY5K9V1n0NUyqgJMXkZ8zWA6ki01uXdIt28rJEJclfq6z7GuZaQGGEKS7rF74/F1uS9wft5GWJSpK/Vln3Ncy5gE1B2XrsFa5HHb7CJdXRTl6WqCT5a5V1X8N8CtiavPUrLclrCd/62McL1mqn153oRf0123pukb9WWfc1TGsBe4Tv+19NQ27/Wh9VuWC5dvpa7TyLX6KS5K9V1n0NIy+gMCJ7H3vPo1rvSP4Os0QlyV+rqfY1z0rkJAVsOp/qwld4/XWU4tRcuWCqdpI4r3aqlS9RSfLXaqp9zbMSuccCNp1PFWk4LHyPvPk74bInXNIV+Ws1z75er9efP38mWYxcpYC65BUekI3he87f1uGVC+ZpJyHOvxbkr9U8+8qUv60ROTh8b//aOvzWPO0k9LXaeRa/RCXJX6t59pUjfxX5qIhpxToHhO8xUzsJkb8W5K/VPPtKkL/q5G069ioWaQzfQ/xJxTztJET+WpC/VpPs63URux459YLHhO/7X62zXYfXrfX4rl03z8pnW88t8tdqkn2d1zDDeuQUBRx/7NWdfG/Dtz52knZKYIlKkr9Wk+xrk/xVnz0VC7sd2zRbaXhlhknaKYElKkn+Ws2wr88afv/+/ToJXJKccLVNv8gbk/c8ye208uHniyXD13p2M1uikuSvVdZ9DSMpoC55LeF7XPLXuAbhcNrJyxKVJH+tsu5rpHoB5WHqlby3N7WsQb4q2snLEpUkf62y7mukUg2b8tQ9eVunKg1smo12crFKGclfB1n3Ncxtb8hzsMext2mq979uv1sf/vlz4tdkpFXKSP46SLy1Ma4FVBx7jfnrfuz9+u7j8ING8rNKJclfB4m3Noa6gIHHXmHuy8P3oJH8rFJJ8tdB4q2NoSigy5lXPU9T+JYuuH6XRvKySiXJXweJtzZGawEnCV/1ZaX70kheVqkk+esg8daGkdfQnrzC02t9oPDipkloJBcLlZH8dZB4a8MIa2gJ3/cd3XD5xaVv3Y6ikVwsVEby18HrJHotq3osoC40b4e3ztA68DF8yd+uFioj+esj9+4GqBfQK3zVAwnfhSxUSfLXR+7dDVAqoOOxd8xYXfgetJCfhSpJ/vrIvbsxrjVUp+f7Qj3cZZRkNlrIxeskei3PyF8fuXc3xlcNw5N3ZPgetJCTtcpI/vpY66funM4FNKanbgH21LYsif5xsVYZyV836TfY26eA48NXnbz1+xK+461VSfLXTfoNDqALX0t6GodXxjbNSfO4WK6M5K+b9BscoLWGgcl7lBNWMS3N42K5MpK/bl4n0WtZVVMBHcO3dQbJsbdpTjrHxXJlJH897bDHrh5/hr0vdDfqd2pWTEvbuFjxAET+etphj71VauibvMbwdZyZtnGxYhnJX0877LG3x/zVTetycO4Rvgdt42TFMpK/nlb8DWg2pRp6fWJgT/DKdxXT0jMuFi0j+etsk2129VVDS3TaY/drHsV362gYF4uWkfx1tsk2uzrXUBegLgfe62yK7z6iYVwsWkby198+O+3HUsMVw5dusVi3huSvv3122o+ihr6xe52z8l31/LSKi3XLSP7622en/TQdDN8X9gU8zuZyL1rFbunfIcjfLrbabCfCGrqfeSVzEr7zWLqM5G8XW222E8m5xj15JXN63ZQmcbF0GcnfLpb+nWgelRr2OPYe4n9t0930ayAdYrd6DcnfXnbbbw+lH2Prhu9nOO3hYvUykr+97LbfTr7K2CN53/+qX2O8xecrtIddghqSvx1tuGV35yOwJCibvC/qlxnv8vkKjeEiQRnJ34423HIPncooiXJ73N/OQGPY5agh+dvXnrv2dT4Cu0woTFVj+JaG0xIucpSR/O1rz127s5fx+lHD+GPvD1rCLk0Nyd/utt24I+MRWJ68R7dj7w/3s/yGMtWQ/O1u24370pVREaadjr0/aAa7TDUkf0fYee9eFKee1vD1OvmWLsh0cIuSrIbk7wg7792R8N2Tf9RQGqVYm2QsbWCXrIbk7yCbb9/LYxl14Xs4fexQuYYGsMtXQ/J3kGS/N0W5LeP7omlOl4HC8OXpq6WsIfk7DhVw8VXG+cP3umYopKwh+TtOyh/gIT5ldPnEtndk89ztstaQ/B0qaxsNZi+j7sisG8UTN0r81pC/o1EHF5Z3UnHsVX/EweM2Shy+B/k7Xu5+GklXxjFn3q8V8qzVcheQ/A3Aa+lCUUZL+FpWqBiLY4M3hfwNkL6rhpFXsjVJjcnbtDbc2qGA5G+MHXprDEklm8LU8oFD06pQsUkByd8wm3TYAJVKjk/e+nogsU8Byd9I+/RZb7eVlIepV/J+LcY4z7b2eS/I30j79Flv10qGJO/tStBkqwKSv8G26rauzpVUhK/8RpWLeZpGuxWQ/I23W8/185W/lSvVZ97KKJ6j0YYFJH+nsGHndfJYScsHDoRvP3sWkPydxZ7910OlkvbkvR3LszPatoDk70S27UJ3pUrq/pGtntqvf2mXvK+dq0f+ToQ32ZFXJR/Pyzwyi82rR/7OZfN29GUspuTDCp6XBdUjf6dDUzrS/Uoh/Dc6npSa7rnkQ/7OiNZ01PqqC/+NjmekRvh+kL+TokcdCYsp/98RPBo1GvuM/J0XneqrUsz3hW4e1NHSX8jfqdGvvr6K2RS7B4/DhtJdkb+z45339alkU/IePAgDSldC/i6A9vWlqCePQI3SVZC/y6CJfclzgQTReV1Er2g65O9K6GZfknpScB16VYL8XQxt7atyRqPUOpWS4gv5ux6a2921pBRZh7o1IX9XRaP7up7aqG0T6qZA/i6MdndHiChQNDXyd230vSPOvwqUy4L8zYAXwKiUvBS2gvrYkb9J8DLo1OtGCl9RE0fkbyq8FU2E5SJxflAHd+RvNrwhEooq7Zw+O++9K/I3J96WEmNlbpMoa3m32mwI8jcz3pwzx2qUgilHhXPvbirkb3K8RUe3IuTLqXw7mhz5u4s9X6oxu67E1vxFXnrxqyN/97LJOxa1zXqWzVPqVdaZHvm7o6xv3Tz7egy4wQubbT34Yaw8+buwNO/h5BsRZp/XmgffDhbGp0D+ZrDoy7nislvDsZPoMuAv4xMhf/NY4qVdYpFyuvRUiN4o7hkfEPmb0FSv9FSLGUOequlLkZ7xqZG/yY18+Qka7Ib8hVRrPvYQXQPAk7Gxyd99EbiAEfkLT0QtIEf+AkAM8hcAYpC/ABCD/AWAGOQvAMQgfwEgBvkLADHIXwCIQf4CQAzyFwBikL8AEIP8BYAY5C8AxCB/ASAG+QsAMchfAIhB/gJADPIXAGKQvwAQg/wFgBjkLwDEIH8BIAb5CwAxyF8AiEH+AkAM8hcAYpC/ABCD/AWAGOQvAMQgfwEgBvkLADHIXwCIQf4CQAzyFwBikL8AEIP8BYAY5C8AxCB/ASAG+QsAMchfAIhB/gJADPIXAGKQvwAQg/wFgBjkLwDEIH8BIAb5CwAxyF8AiEH+AkAM8hcAYpC/ABAjIH8BAGfkLwDEIH8BIEb3/AUAOCJ/ASAG+QsAMchfAIhB/gJADPIXAGKQvwAQg/ydXdf/fjiGfIWfKxWbUtzFOFB48fwPCFFoi9k9vr1dX2+X/3+uCzhF2AmHqPO36WL1XrAPemJ2j6/xsHdbFyjyZFSnfNPCrhdU7iJZUuWhKPaCrdAEs7uGy9c7XHn/e6/EcUgp+yTzvwp5Wrm+FIUudes0LfKhJ2ZXytn61x1f+FJmPd6olIy3V/73339Nd3ncY2WU8IJhe8G26IPZfd7Yz1t9CM6Vji95/aaSwHpc7e23hFtoCjhd3SR7dNkLdkNPzO72TX58t+svfD2kSlMJ8/dxhaW7l5K0abXCvTzuq7T4yoSD94IE6IPZfcVE6c+lUZU5hSlQzynJPMJ7fV3WI6dKOfi4HWMuk7m4RU/M7issbv/cmr/qBZRIZuhxo9ZVnb9+++fKUktjvfaCDdEEs6vkjvAClwVUYuvxRsLFNAVc/bLW/BUuVZ6eir1gQ7TF7D5vb+nNt+RI0wJup3XJ35eYcOZO+dt1L9gQTTC7r3f1+vYqcqQpAiRTWWYorU2yyMH525qeZC7qaIjZPcZEKaC93vlh+Xte8NcfSsOvm61v/PGax4G3f3XZCzZEK8yuHjEDXmlJlulmuE5VGqKLy/rXJbeo7/H2u+q9YEM0AQDEIH8BIAb5CwAxyF8AiEH+AkAM8hcAYpC/ABCD/AWAGOQvAMQgfwEgBvkLADH+B9NU53TBGXxQAAAAAElFTkSuQmCC" alt="" />

  INTERSECT DISTINCT集合运算在逻辑上首先先删除两个输入多集中的重复行,把多集变为集合,然后返回只在两个集合中都出现的行。简单来说,如果一行在两个输入多集中都至少出现一次,那么交集返回的结果中将包含这一行。

  下面是一个简单的示例。

USE TSQLFundamentals2008;
GO -- INTERSECT DISTINCT,删除重复行
SELECT country,region,city FROM HR.Employees
INTERSECT
SELECT country,region,city FROM Sales.Customers;

查询结果如下图

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAg8AAADDCAIAAACK8mUTAAAWpUlEQVR4nO2d/W9c1ZnH73+xP3WX7ooKaO01TAN4kmYTGt4XiqkDNAVSKLm8dVG8xDHvDAmkgEg8KZbN0K4wmzTKFoNKHIZVFaVG1dIQzxaUHWQhr6WmkSpkBRRT1ASx5O4Pd17u3HvPy30Zz5mZz0dfJTPX9577nOfcOd85587MscofHEEIIYQkyuVyVsuDQAghZLjqbuF0AS1PN0IItakqbtElPemaNWtaHgNCCLWjcrmc1SVW4da21cObZaXlCUcIdYy6zi26anjRVZVFCDVVCrewC6VQZWy/Wl4TzdoGO9CZmZmZmZkDjUxO7m15tKnUt3veCiCEmiq1WxRKTkUFxxaord2iUCj5JnAWFxftQqHl0TapvgghFEORxxbBUUXGLmUyneAWS0tLpZNO6aSz7+gp28YtEEKoLoVbeN93z87O1h7PzMy4D86cOVMolDIZO/Rwy0OSKFMppCx1i7m5uVKpNDs7u+/oqUKhhFsghJBXEdyi5hCO4xw4cMC1iqWlpUKh1N/fLyqh1sUn7+uDJUQtU+QWhVLpwIEDhUJpcnKvK9wCIYS8UrjF5OTeubm52dnZmUbcvtW9G9wBbuG7b7Hv6KnKIKNUKpRKCwsL8qjcMFIZ/aTeurgFQigVqd0idGxRKJSWlpbcif7Jyb1ytwh2o74tvgkrUf8bWoiknNDahrrFiRMnFhcXFxcXSyVn39FT+46e8tY0k7ElhoFbIIS6QXFmos6cOXPgwIHaPWGlW5QbO/rgaEMyaJC4RXCLsrMWucXCwkLDsKlUco3CKdiFQml2dlZiGLgFQqgbpHCL8fHxUqnkdqO1yX3339osf6FQiDQTFToCEA0jIrlFsJxgbXVmoipu4TiO4ywsLGRsO5Ox5XfyQ6sgH/fo5EFyoGQHeX0RQiiG1G7hnZNxb2svLS1NTu4tnXTceZvx8XFRT1rWG0lo7qzjFvLtErdwh0qLi4ulk1W3KNiObTuOYxcyhUIpYwvdwvevZq11RlSRHmjWFyGEYiiCW7izT7V7FbUpfolbeN/zhr6t9j0VvWX2ETyFpBxfbSVu4VpF6aTjHW0sLS0tLCwUSrJPCZfD3EJUI1HwoZkJ7qNZsqS+CCEUQ2q3qH0Cyjv75H4UaryKZGxhlCRuUbOKUqnqFrbt2JkTJ07YhUwMtxDFEG9IITlc8ifcAiGUltRu0d/fn8nYvn+9D1xaXhPN2ircouTYpUztk2CLi4tzc3MzMzPybyCWA25R1hg/KUdUyn0k5UjqixBCMcRv0B5xP/XkfkfPVcUt7IxjZ2ZnZzN2RuIWTZXPJFKpL0IIxRBuccS9g71x48aMbbty3aLy7bzq/FurZttE44bY9UUIoRjCLULkekNQLY+/SfVFCCGlcItOVrfVFyHUPHWjWzgAAKCN+6azu9wCIYRQJNWmKPxukQMAgK6n5gs5iVusAQCALqb8wRFdt2jq/FfzCo+NCVGZEIOStggSABISzS2aN/9Vi8YQmRCVCTFEChIAOpgybmFsVCbEEClIAOhgyriFsVGZEEOkIAGggynjFsZGZUIMkYIEgA6m3OFuMT3U1ztUbElUcU8dOQb3RIlPlzxIAOhgyrhFC6JqRgy4BQA0k7LBbjG6vvpLq+vHqh1iZcPAhK9/9Ly/HhmsHTU10mtZlmVV/jSw3n06OOqeYmLQ6hueihBVvZCBiXowPSPTvvBqZxwqCsL2BJk4M96quSVrVBC3AIBIGOsWUyO9tZ50dL3VMzJd31Ic7rEGR8Pdwmst/i67Z2TafTAwUSnWfRDFLSreMDXS6zGJ3qGiN+CGU4eF7QsyYWbGgjVVVxC3AIBImOoWwW5UMJLQ3eL508SgtX7sSHlsoPYePHJU3mGEO7wYE5xaJ8hUMhOxgrgFAESiG93C7UYnBquDg5hu0fi2XXTqVriFTgVxCwCIhKluoTMT5Z1pGRuw9N3CnfeX3hNW9dSN807WwESkmagkbqGcidKrIG4BAJEw1i2OyO5yV/vB4nBP9a5yj+Btu1vIwERjv6y8/avxvr4WnvZd7qBvxXGLQGZ8NdWrIG4BAJEw2S2aJ/Xt30RRpXTDIEEMy3F/OxgkAHQw5a5zi7EBy1K/744eVf39fn200ZLM6FWwGc0HAB1Muevcon2iMiGGSEECQAdTjuQW/oWUUqLW3TSp/HiYEJUJMSjBLQC6gQhu0VQcx2n2KWJgQlQmxKCkpdcwACwHEdyi2XMalmUZ+C/SUasvYwBoOuVIbtGkINzCj5mHZVmOc7y1Mr8vNj9CAEhOZLdI/W1prXDLslrtDn7KHxzBLZSYHyEAJMcgt2i1NYTA2EIH8yMEgOQY5BaMLXALADCWVNwi0TeHVWOL8UFrcDz49ODWvr6tBysbD27ts6z609QQji3mn8xamfy852n2yXnnuONM2taGYn3P6tP6DsFD4rrFfD6bzc/HbvmEh3vALQC6gYRuUV1uKA23EIwt1G4xPmg17JIewrHF/JNZy7Jq3T1uAQCdTtuPLQ5u7WvGqMJFNrbIPpm3LbuIW+AWAF2BQW4RZ2zRvGHFsWPH5GOL7JPztR7fELeYz2crP1RlF6s75G3vJu8+luUernOUxjUEAJ2NQW4h6LHFblHt9JpnF/KxxbxzvOgOL4xwi/l8ttK5Vx7N57Nek8jm5z37OEXbatwiPkrrGgKAzsYgt4g8tnBnoMYHmzcTpRhbuH7gHWS00C28T93HaW3Ru4YAoLMxyC0EPXbDh5/qz+qbm3jnQjm2cJzj8/lM1t5QffpOPhv2WSncAgDaHIPcQvR9i4bBRe2J10Sa5hcaYwt3AFH/fFSxduvbOe4UN1j2ZLg3LM9MlL/fb9xHNBOFWwBAAIPcQtxpe+5ReB2iccjRjPsXOmMLd3hR/zSt8079PrL3I7aWB3syZEsMt2gooVjfUrt9Hez36/tkA1vER2lcQwDQ2aTiFonEd7ljji2MwfwIASA5BrlFq60hBH4nSgfzIwSA5BjkFowtcAsAMJbIbhF/QU4xjC1wCwAwnGhuEbrKZiowtsAtAMBkorlFs7U8i6dG/Rcp1erLGACaTtmclVabVHgSTIjKhBjkmB8hACQnsluk/ra02VaUBBOiMiEGOeZHCADJwS1kmBCVCTHIMT9CAEgObiHDhKhMiEGO+RECQHKSusXEYO13w0eb4xZFu2GRBc9Tz09fNCzDULSrv2KRTnYCeH7322n4hW/33PVg0ohEmJmGn+WYz2cDpwpdACNGOKqjcAuAbiCRWxSHe6omMTXSa60fW063qKzP4Di+3tsp2pZt26nYhSgqT/85n8/WfnGpKZHouEXFoyS/SivaogNuAQApzkQVh3v6hqeWzy2EXdh8PmsXnWIqdiGMqm5VRTubL9ZiaQg2nUiUblH9NVnhDrItOuAWAJCeWyz/2ELQSbpddEqrTqujcv+vnDQwOZRGJAq38E591ReosO2s52dlnaLtPq7GUqwupFqZxNNckzVqhADQQaTjFsXhHqt3qLjM9y38v7Vd2VQzk+R2IY6qvl5ExTQqz9KPROYWVqB/dy3Bqg46svl535Rd6GhDa03W6BECQAeRglsksYpkbuHZVunOGtd8SGwXkn5wPp+1i95VI9z3+UEnSxqJ1C2qIwVvFMGlLLxB+f7UOOZwgoU4arvDLQC6gaRukdAqNNyisa8K77k8NzMabhs07fNIjv8W9nw+a+c9Z08vEsVMVOWRVR/bNFhCZY2kxnFDYLSBWwCAimRuMTZgJVg1T88tGkcTHl9o+Niqd+qlSnK7kPaDRdvyfXTWEnWwSSLRcIuqXxQDbtFgG163qMbtpk5rTdboEQJAB5HILepftrAsy7Ka85kop2HexNNteW7VBj5TWz8uMG0VPTuSqBrDqT1LMxItt6jlKNQtal/HqH54q2GaTDSSCK7JGjVCAOggks5EJRff5TY/BjnmRwgAycEtZJgQlQkxyDE/QgBIDm4hw4SoTIhBjvkRAkByIrtF/PVUxeAWhscgx/wIASA50dwidJHUVDCzxzEhKhNikGN+hACQnGhugVCoWn0ZA0DTKbPSqgQTojIhBjnmRwgAyYnsFqm/LeW+hfkxyDE/QgBIDm4hw4SoTIhBjvkRAkBycAsZJkRlQgxyzI8QAJKT1C1qP/4Rb3ELDbdgpVVxXyzKQCQS/5wWbgHQDSRzi7GB6g/Qjq6P+/OCcd2i61daFWdARuhvDuIWAKAirZmoqZHenpHpZXQLVlpNuGwqbgEAUUjJLaaH+pZ7bNH1K62GZqA+N+VdZLU2W1X9s3cp1pAlkqIFjFsAdAMpuEVxuKc19y26fKXVStneDPhmyASLqoaPLaTHxo8QADqEFGeiYhpGArfwbOvClVa91BY1alhwJLCWhcQtQo9NMUIAaHPScosjxeGe5qyGxEqrOn1x0a7MM/msVLyoaohbpL1eEwB0EIncojjcYw2ONnlswUqrws9lBTLQuAS3ZRcli6qGzET5jk0aIQB0EknHFrXvW8QbWOi4BSutiv4UyIB3W9jcXGVRbnf/6oO6lfmPTR4hAHQMqc1ExRbf5TY/BjnmRwgAycEtZJgQlQkxyDE/QgBIDm4hw4SoTIhBjvkRAkByIrtF/PVUxeAWhscgx/wIASA50dwidJHUVDCzxzEhKhNikGN+hACQnGhugVBQrb6GAWA5KOu7RatDBQCAloFbAACAGtwCAADU4BYAAKAGtwAAADW4BQAAqMEtAABADW4BAABqcAsAAFCDWwAAgBrcAgAA1OAWAACgBrcAAAA1uAUAAKjBLQAAQA1uAQAAanALAABQg1sAAIAa3AIAANTgFgAAoAa3AAAANbgFAACowS0AAEANbgEAAGpwCwAAUINbAACAGtwCAADU4BYAAKAGtwAAADW4BQAAqMEtAABADW4BAABqcAsAAFCDWwAAgBrcAgAA1OAWAACgBrcAAAA1uAUAAKjBLQAAQA1uAQAAanALAABQg1sAAIAa3AIAANTgFgAAoAa3AAAANbgFAACowS0AAEANbgEAAGpwCwAAUINbAACAGtwCAADU4BYAAKAGtwAAADW4BQAAqMEtAABADW4BAABqcAsAAFCDWwAAgBrcAgAA1Oi6Re0xQgih7pTaLVpraAAAYAgKt0AIIYRqwi0QQgip5XeLHAAAQBh1t1gDAAAgpj62AAAAEFFxi1N/fgEhhBASafncIpfLOY7T8gqjtESDkgrT1HYN0V4B4xYopmhQUmGa2q4h2itgoVt89MnctulHbn71n2/ef93G17//o9cGb37l2u+NX/7T6adOnPxTx+cFKUWDkgrT1HYN0V4Bh7vFb+beum3yhtGj2357ZvqNs5N7Ph3f+cdt2z/c8tB/PXDL/utWb1+x9/eTnZ0XpBQNSipMU9s1RHsFHOIWh+bevnP/Tb859as/nJ2Z+r9XXl587tm5Rx/77wcfevf+zTObhg5vuuv1mzOPn//zmfEOzgtSigYlFaap7RqivQL2u8XiZx9v2n/bzF+m3z17aO8XEy+e2PHYsS0P/e6+ocN3/eTQj+5+6/b1k5ff+qvrb9p3fd/wNz488T++4qwq7Z6X5ik0OQZKGWdaDdqqhOifd9lSgRKq7RqivQL2u8X+0t7tv9/y3leHXvvyF7uOb3+8NDR0eNNP3t5471s/3HTwB/+0++LHp4b3/uHfN+4dWPvCpXe8dKu3LO+LKvgCC+bF8uB7Knl9BncTPQ3urFlypC2hlZWcQnRUjIpHPUqeQO8DnXppNqioRWJkTz9Xmg0RmtLQkCKlQt5SorYLDSM0vEhZip2i2InVOa+kspG2yBsiXiHLeZROwObI7xZ37Lll+vO9rzmT+RPbn3p/y78cuuue/7z1roM/vOPATWt2fnvznnu+/Or0l1+dvnf/bVe9uDr7xIW+eoY+Ds1LcGfvy0YZd+jOwY2SB6ICg/FItpyK8poMXkaaqRNt1zkqWPfQf30PdIpVNqjo1JotEimf8Q4MLUHUoFFTEfw3RioSZqkZnU6kl6fyr/r50bna9TsZSSHLeZTOi8gc+d3i1jdueO3LyZdO7tz2wfCdbw7e/dbtP35zw12//sHanf33TN752Zml01+def7QU9dMrL3qxdXfevhceb408yLJu3IfyQtb3n7KxtYpMFK7Sjri5XSL0MfpukVoyfGC189njAP1Ux0pFToVjOQWy2+oCctsO7eQP073KEnAzW67hPK7xZ1v3rLn84kdHz28/f2HnpgeuXr3yk0Hf7Bu9BL7lQ1ffHHacZxnD+cuG+u/evfKa3auuvCRC+QXgTwvoW/igr1YDflu8pJ9hQRLVvakkoZcNrcI1kInBv0EyneTN6iohw1NrzKY0LQrLxVRe4kO1Lm6YqRC1NzKFg+90oLXbfBBaBWCZ9SpuHwf5VGSukt2C2ZDlB95+7b72EKUz9C/yts3GIaoFfTld4vb992YP/HM1vfu+93HM2e+Ort5z93ffvq8TT+/9fTp02fPnn1u5pnLf5a9Kp9dt+s7617o7xs5L/SaCM2OyEXl15kkZTFaS94GkQpPHrOoTJ3S9C9HUd1FydFvDk23OBXdcUM7Ef18KhMoCVVzB3kqdArRrK+864z9QNSbKB9opl3nKpJf/6l0vm3qFvJDTkntWad9Y8vvFgP/dvnj7w9t+a2dm9mydPrTv57+YvOeu09/8dezjvPC4W1rfnbJlWOrvrurf83zK1buyFwwfI4oYn23iFcfnZdipC5Y0w+i9iOS3ZbZLZRnxC30d5CnQr6/NyfK17POpajfy/vOGDy7dx9JOcGQfE0s2ke/9VPpfJez308lYHnTR70qgq+70Feivvxu8cAvN20+9OMHD9u3vX5D7tDI51/+xXEc56zz/Mz21fnMuhf71+1aedlzl37n6Uz/tn/sf7g39JoIDSjGTVGJ5NdxkgIlja1zoWieQhS55ln0L0dlrnylSYJM3qCR+gtlYkUlJLx4RCXop0I/26caX8A6l5zORa58ENriOufSTLv8GpacKHSf7nGLqK9oSStIuqzYhuF3i6n399/46pX3vb3xjqmbBibX5d999o+f/O/WX9+/ZjRzxe7sFbv6L3tuxaodmZXbLux98NzcG4+KKhMMSPIpw+AWZZOEHuXbollmMCTRltDSNAsXhS0/e9QI5ZUKpiV4YckDkDSoJF3yivtOJwo49ESibCibI1JDpJgKyYksMaI29e0jP2Po/sEW95UWLFn0VBJ5aJyifZJc7bE/QRt82ryjogYsav3Q7b7YQoORFC6X3y0+/fyTy5/Jfv8XV962/3s3v3rtlS9nB1+6Zu2uS67YvWrdC/2rf3rxymf6+nO9K57o+cYDX/vwT8f0z5TK91AS1tYEtUvwyjjb64tFSRqiqalo9+vZKLXdNdleAYf88sf+937Z+9A/XP3imptevuq6l9ZdsTv73dHsuuf6Vz+7YtX2i7K5i1Y88s1z7v2b3GuPdHBekFI0KKkwTW3XEO0VcPivCk4d/Y/Vj12cefz8VdsvWrvj0st2XrJ2x8X92y+8+NFvnT/09XPv/9rTrz/W2XlBStGgpMI0tV1DtFfAwl8sX/zs41feeenG/LXnPfC3520+54J//fvzN//dN7d8fcPu6z/684cdnxekFA1KKkxT2zVEewXMakgopmhQUmGa2q4h2itg3ALFFA1KKkxT2zVEewW8fG6BEEKofVVxi/IHRxBCCCGJcrmclQMAAFDB2AIhhJBauAVCCCG1/h/Ij3NI/PfZfwAAAABJRU5ErkJggg==" alt="" />

上一篇:【转】hive中UDF、UDAF和UDTF使用


下一篇:python自学开始