Description
给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价。起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权
N<=100000
M<=200000
Sample Input
4 5
1 2 5
1 3 2
2 3 1
2 4 4
3 4 8
1 2 5
1 3 2
2 3 1
2 4 4
3 4 8
Sample Output
12
很容易想到暴力:化边为点,每两个点中间的边权为两个原来边的更大的权,如图,红色的点是新点:
但是,如果出现了菊花图,那么新边的个数会变成M^2,原地爆炸,我们必须优化建边。
考虑把原来的无向边,变成两条有向边,也就是在新图上把一个点拆成两个点,这两个点之间的边权是原边的边权。
对于每一个原图上的点,把它的所有出边进行排序,每条出边从小到大连一条两个边权之差的边,如图:
这样运用查分建图,就好比,我要过这个点,原来是一起交了钱,现在建完图是先交进入的钱,再将出边和入边的差补交上去。
然后,再将新图建立S、T分别是源点的汇点。将S连向所有原图起点的出边,所有原图终点的入边连向T。
最后图会成为这个样子:
当然,最后跑一边Dijkstra,SPFA会被卡。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cstdlib>
#define REP(i,k,n) for(int i=k;i<=n;i++)
#define in(a) a=read()
#define MAXN 400040
using namespace std;
inline int read(){
int x=,f=;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
f=-;
for(;isdigit(ch);ch=getchar())
x=x*+ch-'';
return x*f;
}
int n,m;
int S,T;
int total,head[MAXN],to[MAXN*],nxt[MAXN*],val[MAXN*];
int Total,Head[],To[],Nxt[],Val[];
int vis[];
long long dis[];
struct edge{
int id,va;
}st[MAXN*];
struct node{
int a;
long long b;
bool operator <(const node &x)const{
return b>x.b;
}
};
priority_queue<node> Q;
inline int change(int x){
if(x%==) return x+;
return x-;
}
inline void adl(int a,int b,int c){
total++;
to[total]=b;
val[total]=c;
nxt[total]=head[a];
head[a]=total;
return ;
}
inline void Adl(int a,int b,int c){
Total++;
To[Total]=b;
Val[Total]=c;
Nxt[Total]=Head[a];
Head[a]=Total;
return ;
}
inline bool cmp(edge a,edge b){
return a.va<b.va;
}
inline void solve(int u){
int cnt=;
for(int e=head[u];e;e=nxt[e]) st[++cnt].id=e,st[cnt].va=val[e];
sort(st+,st+cnt+,cmp);//对于u的所有出边排序
REP(i,,cnt-) Adl(st[i].id,st[i+].id,st[i+].va-st[i].va),Adl(st[i+].id,st[i].id,);//连查分边
for(int e=head[u];e;e=nxt[e]) Adl(change(e),e,val[e]);//每一条出边连向所对入边
return ;
}
inline long long Dijkstra(){
memset(dis,0x7f,sizeof(dis));
dis[S]=;
node p;
p.a=S,p.b=;
Q.push(p);
while(!Q.empty()){
int u=Q.top().a;Q.pop();
if(vis[u]) continue;
vis[u]=;
for(int e=Head[u];e;e=Nxt[e])
if(dis[To[e]]>dis[u]+Val[e]){
dis[To[e]]=dis[u]+Val[e];
node q;
q.a=To[e],q.b=dis[To[e]];
Q.push(q);
}
}
return dis[T];
}
int main(){
in(n),in(m);
int a,b,c;
REP(i,,m) in(a),in(b),in(c),adl(a,b,c),adl(b,a,c);
S=,T=total+;
for(int e=head[];e;e=nxt[e]) Adl(S,e,val[e]);//处理源点
for(int e=head[n];e;e=nxt[e]) Adl(change(e),T,val[e]);//处理汇点
for(int i=;i<=n;i++) solve(i);
printf("%d",Dijkstra());
return ;
}
/*
4 5
1 2 5
1 3 2
2 3 1
2 4 4
3 4 8
*/