1.第一行输入m,n,k
表示m行n维的数组,k表示接下来有k行数据,如1 1 2 2 1,从(1,1)到(2,2)的费用为1,
求从起点到终点,即(1,1)到(5,4)的最小花费为多少
5 4 3
1 1 2 2 1
1 1 5 4 3
2 2 5 4 1
import java.util.*;
import java.util.Scanner;
public class fei1 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[][] arr = new int[k][5];
for (int i = 0; i < k; i++) {
for (int j = 0; j < 5; j++) {
arr[i][j] = in.nextInt();
}
}
int tempi = 0;
int tempj = 0;
int fei = Integer.MAX_VALUE;
int tempfei = Integer.MAX_VALUE;
int temp_s = 0;
int label = 0;
int[] jilu = new int[k];
for (int ti = 0; ti < k; ti++) {
if(jilu[ti]==1)
{
continue;
}
label = 0;
for (int i = 0; i < k; i++) {
if(jilu[i]==1)
{
continue;
}
if (arr[i][0] == 1 && arr[i][1] == 1 && label == 0) {
if (arr[i][2] == n && arr[i][3] == m) {
tempfei = arr[i][4];
fei = Math.min(tempfei, fei);
jilu[i] =1;
break;
} else {
tempi = arr[i][2];
tempj = arr[i][3];
temp_s = arr[i][4];
tempfei = arr[i][4];
jilu[i] =1;
//break;
}
label = 1;
} else if ((arr[i][0] == tempi && arr[i][1] == tempj) && (arr[i][2] != n || arr[i][3] != m)) {
tempi = arr[i][2];
tempj = arr[i][3];
temp_s = arr[i][4];
tempfei = tempfei + arr[i][4];
jilu[i] =1;
} else if (arr[i][0] == tempi && arr[i][1] == tempj && arr[i][2] == n && arr[i][3] == m) {
tempfei = tempfei + arr[i][4];
fei = Math.min(tempfei, fei);
jilu[i] =1;
break;
}
}
}
if (fei == 0) {
System.out.println(-1);
}
System.out.println(fei);
}
}