A Knight's Journey
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 28630 | Accepted: 9794 |
Description
Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one
direction and one square perpendicular to this. The world of a knight is
the chessboard he is living on. Our knight lives on a chessboard that
has a smaller area than a regular 8 * 8 board, but it is still
rectangular. Can you help this adventurous knight to make travel plans?
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one
direction and one square perpendicular to this. The world of a knight is
the chessboard he is living on. Our knight lives on a chessboard that
has a smaller area than a regular 8 * 8 board, but it is still
rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The
input begins with a positive integer n in the first line. The following
lines contain n test cases. Each test case consists of a single line
with two positive integers p and q, such that 1 <= p * q <= 26.
This represents a p * q chessboard, where p describes how many different
square numbers 1, . . . , p exist, q describes how many different
square letters exist. These are the first q letters of the Latin
alphabet: A, . . .
input begins with a positive integer n in the first line. The following
lines contain n test cases. Each test case consists of a single line
with two positive integers p and q, such that 1 <= p * q <= 26.
This represents a p * q chessboard, where p describes how many different
square numbers 1, . . . , p exist, q describes how many different
square letters exist. These are the first q letters of the Latin
alphabet: A, . . .
Output
The
output for every scenario begins with a line containing "Scenario #i:",
where i is the number of the scenario starting at 1. Then print a
single line containing the lexicographically first path that visits all
squares of the chessboard with knight moves followed by an empty line.
The path should be given on a single line by concatenating the names of
the visited squares. Each square name consists of a capital letter
followed by a number.
If no such path exist, you should output impossible on a single line.
output for every scenario begins with a line containing "Scenario #i:",
where i is the number of the scenario starting at 1. Then print a
single line containing the lexicographically first path that visits all
squares of the chessboard with knight moves followed by an empty line.
The path should be given on a single line by concatenating the names of
the visited squares. Each square name consists of a capital letter
followed by a number.
If no such path exist, you should output impossible on a single line.
Sample Input
3
1 1
2 3
4 3
Sample Output
Scenario #1:
A1 Scenario #2:
impossible Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4 【题目背景】
我们知道,在国际象棋中, 骑士的移动路线是 L 型的, (在水平和垂直两个方向上, 一个方向上走两格, 另一个方向上走一格). 因此, 在一个空棋盘中间的方格上, 骑士
可以有 8 种不同的移动方式.
这题的问题是:如果马从[0,0]出发,能否将棋盘中的每一个格子走遍并且保证每个格子直走一次,如果可以的话,按照字典序输出路径。 【题目分析】
这题其实就是一个简单的DFS,难点在于按照字典序来输出路径,这就需要自己画图分析了。 下面是我的AC代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
bool vis[][]; //标记是否走过
int path[][]; //记录走过路径
bool Find;
int a,b;
int dir[][]={-,-, -,, -,-, -,, ,-, ,, ,-, ,}; //实际是一个闭合的环
void dfs(int i,int j,int k)
{
if(a*b==k)
{
for(int i=;i<k;i++)
{
printf("%c%d",path[i][]+'A',path[i][]+);
}
puts("");
Find=;
}
else
{
for(int x=;x<;x++)
{
int n=i+dir[x][];
int m=j+dir[x][];
if(n>=&&n<b&&m>=&&m<a&&!vis[n][m]&&!Find)
{
vis[n][m]=;
path[k][]=n;
path[k][]=m;
dfs(n,m,k+);
vis[n][m]=;
}
}
}
}
int main()
{
int kase=;
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&a,&b);
Find=;
memset(vis,,sizeof(vis));
vis[][]=;
path[][]=;
path[][]=;
printf("Scenario #%d:\n",kase++);
dfs(,,);
if(!Find)
printf("impossible\n");
puts("");
}
return ;
}