二进制小数
首先复习进位计数制的要素:
-
数码:用来表示进制数的元素。比如
- 二进制数的数码为:0,1
- 十进制数的数码为:0,1,2,3,4,5,6,7,8,9
- 十六进制数的数码为:0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
-
基数:数码的个数。比如
- 二进制数的基数为2
- 十进制数的基数为10
- 十六进制数的基数为 16
-
位权:数制中每一固定位置对应的单位值称为位权。
- 二进制第2位的位权为\(2^1\),第3位的位权为\(2^2\):\((10010.1110)_2 = 1 * 2^4 + 0 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0 + 1 * 2^{-1} + 1 * 2^{-2} + 1 * 2^{-3} + 0 * 2^{-4} = 16 + 2 + 1/2 + 1/4 + 1/8\)
- 十进制第2位的位权为\(10^1\),第3位的位权为\(10^2\):\((123.45)_{10}=1×10^2+2×10^1+3×10^0+4×10^{-1}+5×10^{-2}\)
- 十六进制第2位位权为\(16^1\),第3位的位权为\(16^2\):\((BAD)_{16} =11× 16^2+10×16^1+13×16^0=(2989)_{10}\)
总结来说
-
十进制表示公式为:
-
二进制表示公式为:
- 注意:二进制小数不像整数一样,只要位数足够,它就可以表示所有整数。假设我们仅考虑有限长度的编码,那么二进制小数无法精确的表示任意小数,比如十进制小数0.2,我们并不能将其准确的表示为一个二进制数,只能增加二进制长度提高表示的精度。如下图所示,二进制表示十进制的0.2只能无限接近,却永远无法精确表示0.2。
IEEE 浮点表示
于是为了在计算机中准确表示浮点数,IEEE指定了一条标准来规范表示浮点数,若不对浮点数的表示作出明确的规定,同一个浮点数的表示就不是唯一的。例如\((1.75)_{10}\)可以表示成\(1.11×2^0\),\(0.111×2^1\),\(0.0111×2^2\)等多种形式。
IEEE,电气和电子工程师协会( 全称是Institute of Electrical and Electronics Engineers)是一个国际性的电子技术与信息科学工程师的协会,是目前全球最大的非营利性专业技术学会,IEEE 754 标准是IEEE二进位浮点数算术标准(IEEE Standard for Floating-Point Arithmetic)的标准编号。
浮点数的存储格式
IEEE754 标准中规定:
- Float 单精度浮点数,用 1 位表示符号,用 8 位表示阶码,用 23 位表示尾数,一共32位。
- double 双精度浮点数,用 1 位表示符号,用 11 位表示阶码,52 位表示尾数,一共64位。
-
阶码:阶码是整数,阶符和 m 位阶码的数值部分共同反映 浮点数的表示范围及小数点的实际位置 ,常用移码或补码表示。IEEE754标准中采用移码的表示形式。
- 移码:移码(又叫增码)是对真值补码的符号位取反,一般用作浮点数的阶码,引入的目的是便于浮点数运算时的对阶操作。
尾数:数符表示浮点数的符号,尾数的数值部分的位数 n 反映浮点数的 精度 ,常用原码或补码表示。IEEE754标准中采用原码的表示形式
浮点数的表示格式
浮点数表示法是指以适当的形式将比例因子表示在数据中,让小数点的位置根据需要而浮动。这样,在位数有限的情况下,既扩大了数的表示范围,又保持了数的有效精度。
浮点数的真值为:
\]
其中
- S代表符号位,取值为0或1
- e代表指数,E代表阶码
- \(e=E-127(Float)\),\(e=E-1023(Double)\)
- \(E=e_移-1\)
- 计算指数e时,对阶码E的计算采用原码的计算方式,因此单精度浮点数(Float)的阶码E为8位的取值范围是0到255。根据规定,阶码E既不全为0(数值0),也不全为1。
- 所以单精度下8位阶码E的规格化的浮点数阶码范围是1至254,因此指数e的范围则为-126至127。
- 双精度下11位阶码E的规格化的浮点数阶码范围是1至2046,所以指数e范围为-1022至1023。
- M代表尾数,决定浮点数的精度,它是一个二进制小数,表示为\(M=1+f\)
- 其中\(f\)是n 位的尾数所表示的小数值,满足\(0\le f<1\),其二进制表示为:\(\small {0.f_{n-1}f_{n-2}\cdot \cdot \cdot f_{1}f_{0}}\) ,也就是二进制小数点在最高有效位的左边。
- 由于是\(1+f\),所以我们又可以看成\(\small {1.f_{n-1}f_{n-2}\cdot \cdot \cdot f_{1}f_{0}}\)
- 所以尾数的范围为\(1 \le M < 2\)
由上面的每个对应位置的范围,我们可以求得
- 单精度最小规格化正数为:\(x=(-1)^0×2^{-126}×1\)
- 单精度最大规格化正数为:\(x=(-1)^0×2^{127}×(2-2^{-23})\)
例题
a:
0,01,其中0代表是正数,所以原码和补码相同,01→\(0*2^1+1*2^0=1\),所以阶码为+1
1.1001,其中1代表是负数,所以原码为补码末尾减一(1000),按位取反(0111),对应真值为-0.0111=\(-(2^{-2}+2^{-3}+2^{-4})=-\frac{7}{16}\)
所以\(a=2^1×(-0.0111)=2^1×(-\frac{7}{16})=-\frac{7}{8}\)
b:
0,01,对应真值为+1
0.01001对应真值为+0.01001=\(+(2^{-2}+2^{-5})=+\frac{9}{32}\)
所以\(b=2^1×(+0.01001)=2^1×\frac{9}{32}=\frac{9}{16}\)
规格化单精度浮点数
为了提高数据的表示精度同时保证数据表示的唯一性,需要对浮点数做规格化处理。
在计算机内,对非0值的浮点数,要求尾数的绝对值必须大于基数R(这里R=2)的倒数,即\(|M|≥1/R\)
0.5规格化
0.5的二进制为0.1
符号位S为0,指数为\(e=-1\)(为啥?我猜是因为0.1中1的最高位是-1),规格化后尾数为1.0(为啥?因为M最小为1.0)。
单精度浮点数尾数域共23位,右侧以0补全,尾数域:
\]
阶码E:
\]
对照单精度浮点数的存储格式,将符号位S,阶码E和尾数域M存放到指定位置,得0.5的机器码:
\]
1.5规格化
1.5的二进制为1.1
符号位为0,指数\(e=0\)(为啥?我猜是因为1.1中1的最高位是0),规格化后尾数为1.1(为啥?因为二进制为1.1,所以M就是1.1,如果二进制是1111,M就是1.111)。
尾数域M右侧以0补全,得尾数域:
\]
阶码E:
\]
得1.5的机器码:
\]
5规格化
5的二进制为101
符号位为0,指数为\(e=2\),规格化后尾数为1.01(为啥?因为二进制为101,所以M就是1.01)。
单精度浮点数尾数域共23位,右侧以0补全,尾数域:
\]
阶码E:
\]
得5的机器码:
\]
参考文献
浮点数的表示 -- 基本格式、规格化、表示范围_starter_____的博客-CSDN博客_浮点数规格化表示