POJ3233 Matrix Power Series 矩阵乘法

http://poj.org/problem?id=3233

挺有意思的..学习到结构体作为变量的转移,
题意 : 给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。
代码:
 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
const int maxn=;
const double eps=1e-;
int n,m;
struct mat{
int e[][];
};
mat plu(mat x,mat y){//相加
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
x.e[i][j]+=y.e[i][j];
x.e[i][j]%=m;
}
}return x;
}
mat pro(mat x,mat y){//相乘
mat z;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
z.e[i][j]=;
for(int k=;k<=n;k++){
z.e[i][j]+=x.e[i][k]*y.e[k][j];
z.e[i][j]%=m;
}
}
}return z;
}
mat pow(mat x,int k){//次方
mat z;
if(k==){
return x;
}
if(k%==){
z=pow(pro(x,x),k/);
return z;
}else{
z=pow(pro(x,x),k/);
return pro(z,x);
}
}
mat doit(mat x,int k){//相加
if(k==){
return x;
}
if(k%==){
mat z;
z=doit(x,k/);
return plu(z,pro(z,pow(x,k/)));
}else{
mat z,z1;
z=doit(x,k/);
z1=pow(x,k/);
return plu(plu(z,pro(z,z1)),pro(pro(z1,z1),x));
}
}
int main(){
int k;
mat a;
scanf("%d%d%d",&n,&k,&m);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&a.e[i][j]);
a.e[i][j]%=m;
}
}
mat ans=doit(a,k);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
ans.e[i][j]%=m;
printf("%d ",ans.e[i][j]);
}
cout<<endl;
}
return ;
}
上一篇:POJ 3233 Matrix Power Series 矩阵快速幂+二分求和


下一篇:poj 3233 Matrix Power Series 矩阵求和